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PROBLEMS PROPOSED IN THIS ISSUE 

H-493 Proposed by Stefano Mascella & Piero Filipponi, Rome, Italy 

Let Pk(d) denote the probability that the kih digit (from left) of an £ digit (£>k) Fibonacci 
number Fn (expressed in base 10) whose subscript is randomly chosen within a large interval 
{nvfh\ (n2>nl) is d. 

That the sequence {Fn} obeys Benford's law is a well-known fact (e.g., see [1] and [2]). In 
other words, it is well known that Px(d) = log10(l + l/d). 

Find an expression for P2(d). 

References 
1. P. Filipponi. "Some Probabilistic Aspects of the Terminal Digits of Fibonacci Numbers." 

The Fibonacci Quarterly (to appear). 
2. L. C. Washington. "Benford's Law for Fibonacci and Lucas Numbers." The Fibonacci 

Quarterly 19.2 (1981):175-77. 

H-494 Proposed by David M Bloom, Brooklyn College, New York, NY 

It is well known that if P(p) is the Fibonacci entry point ("rank of apparition") of the odd 
prime p^5, then P(p) divides p + e where e = ±l. In [1] it is stated without proof [Theorem 
5(b)] that the integer (p + e)/ P(p) has the same parity as (p -1) / 2. Give a proof. 

Reference 
1. D. Bloom. "On Periodicity in Generalized Fibonacci Sequences." Amer. Math. Monthly 72 

(1965):856-61. 

H-495 Proposed by Paul S* Bruckman, Edmonds, WA 

Let/? be a prime ^ 2,5, and let Z(p) denote the Fibonacci entry-point ofp (i.e., the smallest 
positive integer m such that p\Fm). Prove the following "Parity Theorem" for the Fibonacci 
entry-point: 

A. If p s 11 or 19 (mod 20), then Z(p) = 2 (mod 4); 
B. if _p = 13 or 17 (mod 20), then Z(p) is odd; 
C. if p = 3 or 7 (mod 20), then 4\Z(p). 
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SOLUTIONS 

Irrational Behavior 

H-481 Proposed by Richard Andre- Jeannin, Longwy, France 
(Vol. 31, no. 4, November 1993) 

Let <fi(x) be the function defined by 

**) = Sf-
«>0 r

r" 
where r > 2 is a natural integer. Show that <f>(x) is an irrational number if x is a nonzero rational 
number. 
Solution by Norbert Jensen, Kiel, Germany 

Let x G Q \ {0}. We have to show the irrationality of </>{x). 
The proof is similar to the well-known proof of the irrationality of e. Note that the series 

Y£=m xn I Fn and T^=m x" I ar" converge for all m G N0. This can be proved by the ratio test. For 
the second series, the proof is obvious. Applying the test to the first series, one can use the 
following step (0). 

Step (0): Fr„ IF^m < 8ar"(1-rm) for all n,meN0. 

Proof: FrJFr„+m=(ar -pr)l(ar -pr )<{ar +\)/(ar -1) < 2ar I (1 / 4)ar = 
gQ,r"(l-r") Q E D J ^ J 

Let pm = 5£.m x" /F„ for all meN. 

.Ste/; (1): For an appropriate positive constant c eR, we have |/?m|<c|jc|"7F„ for all /w eN. C 
depends only on |x|. 

Proof: From (0), we derive 

Q.E.D. [(1)] 

Ste/; 0 : Let z GN. Then |rw-1i^,_Ipllf | < 1 for all sufficiently large m GN. 

Proof: \zm-lFrm^pm\<czm-lFrm„x \x\mIFrm=c\x\(z\x\y-lFr^ IFm <d(z\x\)m~lIa^ by (1), 

(0), where d\% an appropriate positive constant depending only on |x|. Since T%=0(z\x\y Iar" 
converges, the last term tends to 0 as m tends to infinity. Q.E.D. [(2)] 
Step (3): There is an m^ GN such that, for all m eN, m>m0:pm^0. 

Proof: Case 1—x > 0. The assertion follows because pm > xm I Fm > 0. 
Case 2—x<0. Let n% GN such that arm°(r~l) >S\x\. Let m,nGN, n^m^rn^. 

Then a^-V > cT^ > 8|x|. Therefore, by (0): Fn+l IFn > \x\ and \IFn > \x\/Fn+l, whence 
\x\nIFrn>\xrlIFr„+l. 
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If m is even, it follows that 

Pa = I (\x\2kIFrU-\x\1MIFrM)>\x\mIFrm-\xrXIFr^>Q. 
k=m/2 

Ifm is odd, an analogous argument shows that pm < 0. Q.E.D. [(3)] 

Step (4): <j){x) is irrational. 

Proof: Let p9q eZ, g > 0, such that x = pi'q. Suppose on the contrary that (f){x) is rational. 
Then there are a, b e Z, b > 0, such that ^(x) -alb. Thus, fe^(x) e Z. 

According to (2) and (3), there is an m e N, m > 2, such that |ibq)m~lFrm^pm | < 1 and pm * 0. 
L e t ^ ^ Z ^ V / F . . Now 

(bqT-lFm^(x) = (bqrlF^(am + pm) = (bq)m-lFm^m+(bqrlFm^pm eZ 

and (bq)^lF^amsZ9 

since F , divides F ^ , for 7 - 0,1,..., m - 1 . But \{bq)m-lFrm_xpm \ < 1; hence, (bq)m-lFrm_lPm = 0, 
pw = 0, a contradiction. Q.E.D. 

y4&0 solved by P. Bruckman, H.-J. Seiffert, and the proposer. 

Generalize 

H-482 Proposed by Larry Taylor, Rego Park, NY 
(Vol 31, no. 4, November 1993) 

Let7, k, m, and n be integers. Let An(m) = 5„(m-1) + 4^M(w-1) and 5„(w) = 4Bn(m-1) + 
54,(/w-1) with initial values 4(0) = Fn, Bn(0) = Ln. 

(A) Generalize the numbers (2,2,2,2,2,2,2,2,2,2,2) to form an eleven-term arithmetic pro-
gression of integral multiples of An+k(m + j) and I or Bn+k(m + j) with common difference An(m). 

(B) Generalize the numbers (3,3,3,3,3,3,3,3,3,3) to form a ten-term arithmetic progression 
of integral multiples of An+k(m + j) and I or Bn+k(m + j) with common difference AJjri). 

(C) Generalize the numbers (1,1,1,1,1,1,1,1) to form an eight-term arithmetic progression of 
integral multiples of An+k(m + j) and I or Bn+k(m +j) with common difference An{m). 

Hint: An(l) = -ll(-iyA_„(-l). 
Reference: L.Taylor. Problem H-422. The Fibonacci Quarterly 28.3 (1990):285-87. 

Solution by Paul S. Bruekman, Edmonds, WA 

The recurrence defining the An(mys and B„(mys may be put into matrix form 
Cxn(m-l) = xn(my (1) 

where 

C = (« >). (2) 

xn{j) = {An{j) B„(j))T. (3) 

We may invert the recurrence in the matrix form 
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xn(m-l) = C-lxn(m), where C - ^ ^ ^ fj. 

This yields the relations: 

An(m-l) = j-i(4An(m)-B„(m)), Bn{m-\) = ^{-5An{m) + 4Bn{m))- (4) 

By repeated application of (1) (in either direction), we obtain 

Cn,x„(0) = x„(m), withx„(0) = (F„ L„)r. (5) 

We may show that there exist two sequences of rationals (pm) and (am) (integers for rn> 0), 
such that 

•="-(& 2} <6> 
We have no need to investigate further into these sequences, except to note that they are func-
tions solely of m, and not of n. The relevant observation from (5)-(6) is the following: 

4 , 0 » ) = PmFn+^mL^ Br,(™) = 5°T mFn + P m K ' ( 7 ) 

Now using the identities Ln- Fn-h2Fn_l,5Fn- Ln + 2Ln_x, and making the substitutions 
Pm + (7m- rm* °̂"/w = 5m> 0) ls transformed to the following: 

4 » 0 » ) = rmFn + SmFn-l> fyi™) = rmLn + SmLn-V ( 8 ) 

In this form, we see that An{m) mdBn(m) are generalized Fibonacci and Lucas numbers, respec-
tively, as these were defined in part (B) of the published solution to H-422 (see reference [1]). 
Here, the An{m),Bn{m),rm, andsm replace the Un,Vn,r, ands, respectively, as such were intro-
duced in [1]. Note that the An(m) and/?„(#*), for fixed m, satisfy the same linear recurrences 
as are satisfied by Fn andZw; in the sequel, we shall tacitly use these without comment [e.g., 
Ai+i(n*) = Ai+i(m) ̂  Ai(mX Bn(m) = 4i+i(m) + d„-i(tri), etc.]. Also, in the sequel, we will write 
(for brevity) An = AJjri), An = An{m + \)^An = An(m-l), with similar notation for the J?w(/w)fs; 
however, in the final solution of each part, we will revert to the unabridged notation. 

Solution of Part (A) 

Using parts (B) and (Al) of [1], the following 7-term arithmetic progression (A.P.) is found, 
whose common difference (c.d.) is equal to An, and whose terms consist of integral multiples of 
An+k and/or Bn+k: 

Our goal, if possible, is to affix four additional terms to the A.P. above (at one or both ends), such 
that these terms are of the form required in the statement of the problem, such that the c.d. for all 
11 terms remains Any and such that, for some fixed m and n, all 11 terms equal 2. We require a 
few additional identities: 

2An+2 + An = An. (10) 

Proof: Replacing m by m+1 in the original recurrence, we have: 

An = 4An + Bn=4An + An+l + An_l=4An + An+l+An+l-An=3An + 2(An+2^ 

94 [FEB. 



ADVANCED PROBLEMS AND SOLUTIONS 

A„ + A„ = 2Bn+l. (11) 

Proof: Using (10), Z , + 4, = 2 4 + 2 + 2 4 = 25„+1. 

24-2 + 4 = 1 1 ^ . (12) 
Proof: From (4), 

ii4ll = 44 l -5 l l = 44I-(4 l + 1 + 4r.1) = 44,-(4,+24^i) 
= 34 - 2(4 - 4 . , ) = 2 4 ^ + 4,. 

114,+ 4 , =2^-i - (13) 

flrw/- Again using (4), 1L1 + 4 = 5 4 , - ^ = - ^ + ̂ + ^ = 2 5 ^ . 

Now, by inspection of (9)-(13), we see that the following is an 11-term A.P. of the required 
form, with c.d. = An = 4 ( w ) : 

{-IB^tml ~ 114.0* - 1 ) ? " 24^0») , 4-3(^)5 24,-iCw), Bn{m\ 2An+l{m\ 
4+3(m), 2A^2(m)9 AJjn +1), 25„+1(m)). 

It only remains to show that, for some fixed m and «, this A.P. reduces to an 11-tuple of 2's. We 
find that setting m = n = 0 accomplishes this; for, in that case, the c.d. is AQ(0) = FQ = 0, and one 
term, e.g., 2?0(0), is equal to LQ = 2. Therefore, (14) is a valid solution of part (A). 

Solution of Part (B) 
Using parts (B), (A4)(iii), and (A4)(i) of [1], the following pair of 4-term A.P.'s are found, 

with c.d. = 4* an(i with terms of the required form: 

( - 3 4 ^ 2 , - 4 ^ , ^ 2 , 3 4 - 1 ) ; (15> 
(34^+1, Bn+2> 4+4?3An+2). (16) 

Our goal, if possible, is to affix two additional terms of the required form between the two 4-term 
AJP.'s above, thereby forming a 10-term A.P. which satisfies the condition that, for some fixed m 
and n, all 10 terms equal 3. We require a few additional identities: 

34_1 + 4 = 1L4„+1. (17) 

Proof: Replacing n by n +1 in (12), we have: 

i UH.I = 24,-1+4+i = 2 4 - i + 4 + 4-1 = 4,+34,-i-

34*1-4 , = 4 - i - (18) 
Proof: Replacing n by n - 1 in (10), we have: 

An-\ = 24+1 + 4 - i = 2 4 + 1 + A+i ~ Ai - ^Ai+i ~ Ai • 

A f - i - 4 f = 114l+1. (19) 
Proof: By (18), 

An-l ~ An = 34+1 - 2 4 = 34+1 ~ 2(4+1 ~ Ai-l) ~ 4+1 + 2 4 - 1 - 1 ^An+l 
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[using (12), with n + l replacing ri\. By inspection of (15)-(19), we see that we have "bridged the 
gap" between the two 4-term A.P.'s, as required, producing an A.P. of 10 terms of the required 
form, with c.d. = An; this is given as follows: 

(-3An_2(m), - A„_4(m\ Bn_2{m\ 3An_l(m\ 1 \An+1(m -1), 
4Ml(/w +1), 3 4 + 1 0 ) , Bn+2{m\ An+A{m\ 3An+2(m)). 

Again setting m = n - 0, the c.d. is 0 in this case, and one term, e.g., 3-4(0) = 3Fl = 3; thus, in this 
case, we have a 10-tuple of 3's, as required. This shows that the 10-tuple in (20) provides a 
solution to part (B). 

Solution of Part (C) 

Using parts (B) and (A2) of [1], we find the following 6-term A.P. of the required form, with 
c.d. = 4 : 

\Bn-l> ~ 4-2> 4-l> 4+l> 4+2> Bn+l)' (21) 
Our goal, if possible, is to affix two terms to this A.P. (at either end or at each end), which are of 
the required form and satisfy the desired conditions. We require two additional identities: 

Bn+l + An = UAn+2. (22) 

Proof: Replacing n by n + 2 in (12), we have: 

1 lAn+2 ~ 2 Ai + 4+2 - 4 + (4 + 4+2) ~ 4 + Bn+l • 

Bn_l + An = ~An-2. (23) 
Proof: Replacing n by n-2 in (10), we have: 

A-2=24 + 4_2 = 4 + ( 4 + 4_2) = 4+5„_1. 
By inspection of (21)-(23), we see that the following 8-term A.P. has c.d. = An\ 

(-An_2(m +1), -B^ imX - An_2(m), An_l{m\ An+l(m), An+2(m\ B„+l(m), 1 lA„+2(m-1)). (24) 

Again setting m = n = 0,we see that the c.d. = 0 and each term, e.g., 4 (° ) = F\ = 1 for this case; 
thus, for this case, we obtain an 8-tuple of l's. This shows that (24) yields a solution to part (C) 
and we are done. 

Also solved by the proposer. 
• > • • 
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