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The generalized Fibonacci sequence {Hn} where Hn = Hn_x + Hn_2, Hl= A,H2~B, A and 
B integers, has been studied in the classic paper by Horadam [6] and by Hoggatt [4] and 
Brousseau [1], among others. Here we develop ten greatest integer identities for {Hn}. Rather 
than establishing these identities "for n sufficiently large," we show exact lower boundaries for 
subscript n dependent upon the subscript of Fk, the kth Fibonacci number. 

Let A, B be positive integers with A < B and define Hn (= Hn(A, B)) by 
HX = A, H2=B, Hn = Hn_^Hn_2 forn>3. 

It is not difficult to see that in the sequence B-, A,B- A,2A-B,2B-3A,5A-3B,... there is 
a leftmost term the double of which is less than or equal to the preceding term; otherwise, the 
rational number AIB would satisfy F2n I F2n+l < AIB < F2n+11 F2n+2 for all n. Consequently, 
every sequence Hn(A,B) agrees, except for some initial finite set of terms, with a sequence 
Hn(A\ Bf), where Af and B' are positive integers with A' = B' or 2Af < B'. Then, without loss 
of generality, we take A-B or2A<B to standardize the subscripts of {Hn} so that Hn>0 for 
all n>0 where we take H0=B- A. (The term 2A-B preceding H0 will be negative when 
A*B.) 

For these reasons, in the following we confine our attention to the two cases (a) A = B; and 
(b) 2A < B. We call these, respectively, the Fibonacci case and the Lucas case. Throughout, we 
put H0=B- A and define k by Fk_x <H0 < Fk for k > 3 in the Lucas case and by Fk < A <Fk+l 

for k > 2 in the Fibonacci case. 
In the following we prove ten identities for the general sequences {Hn}, 0<A<B. In 

Sections 2 and 3 we give ten greatest integer properties of {Hn} in the Fibonacci and Lucas cases 
and, finally, in Section 4 we give these ten properties in a form which includes both cases. 

1. PROPERTIES OF {Hn} WHERE Hn = Hn_t +Hn2 

The following identities needed for our development are true for all {Hn}, Hn = Hn_l +Hn_2, 
0 < A < B, and are given in [1], [4], or [6] or else are proved here. 

Hn=Fn_2A + Fn_xB. (1.1) 

Fn=(a"-p")lS, where a = (l + j5)/2,fi = (l-j5)/2 
are the roots ofx2 -x-l - 0 and ap = -\, a + /? = 1 (1.2) 

Hn - can +df3n for suitable c and d. (1.3) 

50 I FEB. 



GREATEST INTEGER IDENTITIES FOR GENERALIZED FIBONACCI SEQUENCES {Hn} 

From (1.1) and (1.2), 

V5 H„ = A(a"-2 - P"-2) + B(a"~l - p"'1) 
= a"-\B-pA)-p"-\B-aA) 
= an{pA-B)P+p\B-aA)a 
= a"(A-p(B-A)) + p"(a(B-A)-A\ 

so that one choice for c and d, where A = H1 and B- A = H0, is 

c = (A-P(B-A))lS and rf = ( a ( 5 - ^ ) - ^ ) / V 5 . (1.4) 

Identities (1.5) and (1.6) are easily established by mathematical induction: 

ak~2 <Fk<ak-\ k>3; (1.5) 

1/2" <\pf<l/2, n>2, \p\"<l/4, n>3. (1.6) 

Lemma 1.7: There exists an expression K(m) such that 

amFn = Fn+m+p"~»'K{m) 

where \K(m)\< 1, m > 1, and j^(m) < 0 if m is even while K(m) > 0 if m is odd. 

Proof: Multiply by am in (1.2) to write 

a w F „ = a w ( a w - ^ ) / V 5 = ( a " + w - ^ ^ 

amFn = (an+m - fin+m)IS+pn~m{(32m + (-l)w+1)/ V5, (1.7) 

which will verify Lemma 1.7. • 

Lemma 1.8: There exists an expression K*{m), 0 < K*(m) < 1, such that 

Fnlam = Fn_m+P"-mK\m),m>\. 

Proof: Multiplying by 1 / a™ in (1.2) yields 

FJam = {an-p")lamS = {a""" - pn~m) 141 + (y9"""" + (-1)'"+1 p"+m) IS 

Fnlam=Fn_m+P"-"\\ + {-\)m+xp2'")lS, (1.8) 

which will verify Lemma 1.8. • 

The characteristic number D for {//„} is defined as D = B2 - AB- A2 in [1] and [6], and 

Hl-H^H^i-VfD, (1.9) 

where D> 0 in the Lucas case where 2A<B, while D - -1 for the Fibonacci numbers, 

^2-^,+ 1=(-ir+ 1- o-io) 
Identities (1.9) and (1.10) show a subtle but important difference in parity between the Lucas 

and Fibonacci cases, since n even in (1.9) gives a positive value while n even in (1.10) gives a 
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negative value. The difference in parity causes us to consider the Fibonacci and Lucas cases 
separately. 

2. THE FIBONACCI CASE: THE SEQUENCES {HJ WHERE A = B 

Consider the Fibonacci case for {Hn} where A = B. Then Hn = AFn, A>1. We write ten 
greatest integer identities which are true for {Hn} when Hn = AFn, and hence for {Fn}, since the 
Fibonacci sequence is the special case A = B = 1. We write [x] to denote the greatest integer 
contained inx, and in every case, we determine kby Fk < A <Fk+l, k>2. 

Theorem 2.1: [aAFn ] = AF„+l, n odd, n>k,k>2,A>l; 
[aAFn]=AFn+l-l w-even, n>k,k>2, A>\. 

Proof: Let m= 1 in (1.7) to write 

Multiplying by A and computing (J32 +1) / V5 = -fi, 

aAFn = AFn+1+(-An- (2.1) 
If A<Fk+l, we have A<ak by (1.5), and 

\-Apn\<\akpn\ = \pn-k\<\ 
for n > ky k > 2, by (1.6). If n is odd, 0 < -Aft" < 1, while if n is even, 0 > -Afin > - 1 , giving 
Theorem 2.1, forn>k, k>2. • 

Theorem2.2: {aAFn +1/2] = AF„+l, n>k + 2. 

Proof: Since \-Afin\<\akfin-k\ = \fi"-k\<l/2 ifn>k + 2, adding 1/2 to each side of (2.1) 
will ultimately yield Theorem 2.2. • 

Theorem 2.3: [AFn/a] = AF„_l9 n odd, n>k, k >2, A > 1; 
[AF„/a] = AFn_x - 1 , « even, A2 > k, k > 2, A > 1. 

Proof: By taking m = 1 in (1.8) and multiplying by A, 

AFn/a = AFn_l + (-Afin). (2.3) 
The proof is finished by analyzing \-Aj3n\ as in the proof of Theorem 2.1. D 

As in Theorem 2.2, variations of Equation (2.3) will lead to Theorems 2.4 and 2.5; the proofs 
are omitted. 

Theorem2.4: [AFJa + l/2]= AFn_x, n>k + 2. 

Theorem2.5: [(AF„ + l ) / a ]= AFn_l7 n>k + 2. 

Theorem 2.6: [amAFn ] = AFn+m, n odd, n>m + k; 
[amAFn]=AFn+m-\, /?even, n>m + k. 
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Proof: Multiply by A in Lemma 1.7 to write 

amAFn = AFn+m + ArmK{m) (2.6) 

where \K(m)\ < 1, m > 1, and K(m) < 0 if m is even while K{m) > 0 if m is odd. Since also A < ak 

when n>m + k, 

|^w"wX(m)|<|aVn"', ,^(w)|<|)8',-' , ,"*|<l. 

If w is odd, and m even, K(rn)<0,f3"-m <0, and 0 < Af5n~mK{m) < 1, while w odd 
makes the same result from iC(m) > 0 and fin~m > 0. Thus, if n is odd, [a 'MFJ = AFn+m.. 

If w is even, m odd makes £(m) > 0, [in~m < 0, so that 0> Af5n~mK{m) > - 1 , while m even 
gives the same result from K(m) < 0 and f}n~m > 0. If n is even, [amAFn] = ^ i 7 ^ - 1 . D 

Adding 1/2 to each side of (2.6) will ultimately yield Theorem 2.7. 

Theorem2.7: [amAFn+\/2]=AFn+m, n>m + k + 2. 

Theorem2.8 [AFn / am] = AFn_m, n-mQven, n>m + k; 
[AFnlam] = AFn_m-\ w-modd, n>m+.k. 

Proof: Refer to Lemma 1.8 to write 

AFJam = AFn_m + Ap"-mK*(m) (2.8) 

where 0 < K*(m) < 1, m > 1, and 4̂ < a/c. 
If n-m is even and n-m> k, 

0 < AJ3"-mK*(m) < akp"-mK\m) < 1. 

If n-m is odd, /T~w < 0 while A > 1 and, if n > m, 

0 > Afin-mK\m) > (5n-mK\m) > -\pf-m > - 1 , 

finishing the proof. D 

Theoreim2.9: [AFn Iam +1/2]= AFn_m, n>m + k + 2. 

Proof: Add 1/2 to each side of (2.8), and analyze the resulting expressions for n-m even, 
and for n-m odd. D 

TheoremZIO: AFn =[Aa" IS + 1/2], n > k, k > 2, A > 1. 

Proof: 
AanlS + \l2 = A{anlS-pnl4l) + Apn lS + 112 

= AFn + A/3n/j5 + l/2 
where 

| ^ / V 5 + l /2 |<|a^"/V5 + l/2|-|)5"-/:7V5 + l/2|<l 

for ;?>£andA;>2. D 
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If A - 1, we have, of course, the Fibonacci numbers {Fn}. Theorems 2.1 and 2.6 for {Fn} 
appear in [5], and Theorems 2.2 and 2.10 in [4], for A = 1 and n>2. By taking A = 1 in the 
proof of Theorems 2.2, 2.4, and 2.5, we find that in the special case AHn -Fn all three are true 
for n > 2. 

If {Hn} contains Hn = kFn butHn_l ^ KFn_{, then we have the Lucas case A^B of the next 
section. 

3. THE LUCAS CASE: THE SEQUENCES {HJ WHERE 0 < 2A < B 

Let Hn -Hn_x +Hn_2 whereHx = A,H2= B, and 0<2A <B. We prove ten greatest inte-
ger identities as before, but we define k by 

Fk_x<B-A<Fk, k>3. 

Referring to (1.5), we can combine inequalities to write 

B-A<ak'\ k>3; andl</L (3.01) 

By applying (1.4) and (3.01) and making careful analysis of signs, we next establish 

\45dp"\<\p\n-k-\p\n,n>k, (3.02) 

where d = (a(B - A) - A) IS > 0. 
If n is even, B" > 0, and 

0<SdBn = (a(B -A)- A)B" < {aak"x -1)0" 

= (-l)kB"-k-B" 

= \B\-k-\B\". 
If n is odd, -B" > 0, and 

0 > Sdp" = (A- a(B - A))(-B") > (1 - aak'l)(-B") 

= -B" + (-\)kB"-k 

= \B\n-\P\-k 

which establishes (3.02) and will allow us to write several identities for {H„}, in the Lucas case. 

Theorem 3.1: [aHn] = Hn+l, n even, n > k; 
[aHn] = Hn+l-l, nodd, n>k. 

Proof: 
aHn=a(ca"+dj3") 

= can+l+d/3"+l-dj3n+l-dj3"-1 

= Hn+l-dr\P2 + l) 
aHn=Hn+1+j5d{3". (3.1) 

By (3.02), \45dpn\<\p\n-k-\p\n<\-\l2\n>k, which establishes Theorem 3.1 by considering 
the cases n even and n odd. • 
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Theorem 3.2: [aHn +1 /2] = Hn+l, n>k + 2. 

Proof: Add 1/2 to each side of (3.1) and use (3.02) to analyze the result. • 

Theorem3.3: [H„/a] = Hn_u n even, n>k\ 
\HJd\ = H^-\ wodd, n>k. 

Proof: 
HJ a = (can +dfin) / a = ca"~l + d/3"-1 -dp"'1 -dj3n+l 

HJa^H^+Sdp* (3.3) 

where we note the same fractional expression as in Theorem 3.1. D 

Theorem 3.3 corrects a proof of a theorem of Cohn [2; p. 31], in which he gives the next 
lower term to N as [NI a], which is true when n is even but not when n is odd. Dr. Cohn has 
acknowledged the error in a private correspondence with one of the authors. 

Theorem3.4: [Hn/a + \/2] = Hn_u n>k + 2. 

The proof is identical to that of Theorem 3.2, but using (3.3). • 

Theorem3.5: [(Hn +l)/a] = Hn_l, n>k + 3. 

Proof: From (3.3), 
(Hn+l)/a = Hn_l+j5d/3" + l/a. 

By (3.02), |V5rf/T|<l/4-l/2w for«>£ + 3. Adding 1/a to each term of the inequality for 
the case n even, and then for the case n odd, we find that in either case, we obtain 
§<4idpn + \la<\. D 

Theorem 3.6: [amH„] = Hn+m, n even, n>m + k,m>2; 
[amHn] = Hn+m-l, n odd, n>m + k,m>2. 

Proof: Since l / a w =(-1) W JS W , 

amHn = am{can+dpn) 
= can+m + d/3n+m - dpn+m + {-\)md/3n-m 

= H^a+j5d/3™((-l)m-fi2m)/^ 
amHn = Hn+m+SdrmM{m) (3.6) 

where \M{m)\<\ form>\. By (3.02), 

|V5d0 w - w M(/ f i ) | ^ 

for n-m>k. Consider the signs carefully. For n odd, m odd, J3n~m>0 and M{m) < 0, while for 
n odd, m even, fin~m < 0 and M{m) > 0, so whenever n is odd, 

0>^d/3n-mM(m)>l/2"-m-1>-19 
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so that [amH„] = Hn+m - 1 . For n even, m odd, ft" m <0 andM(/w) <0, while for n even, 7w 
even, pn~m > 0 and M(/w) > 0, so whenever n is even, 

0 < S dp"-mM{m) < 1 - 1 / 2"~m < 1, 

so that [a m / / J = //„+m. D 

TheoremS.7: [amH„+l/2] = Hn+m, n>m + k + 2. 

Proof: By (3.6), 

amH„ +1 / 2 = #„+ffl +4ldp"-mM{m) + 1/2 

where |V5^""mM(w) |<l /2- l /2""m for»-/w>A: + 2. Add 1/2 to each member of the 
inequalities for the even and odd cases as in the proof of Theorem 3.2. • 

Theorem3.8: [Hnl am] = H„_m, n-modd, n>m,n-m>k; 
[Hnlam] = Hn_m-\, n-meven, n>m,n-m>k. 

Proof: Since l / a m =( - l ) m /T , 

HJam = {can+dpn)lam 

= can-m+dp"-m-dp"-m + d{-\)mpn+m 

= #„_M + dp"~m{-\ + (-l)m+1p2m) 
- /f„_m + Sdpn-m{{-1 + (- l)m+1yS2m)V5) 

HJam=Hn_m+Sdp"-mJ(m) (3.8) 
where | J(/w)| < 1 for m > 1 but Jirri) < 0 for m > 1. From (3.02) we have the same results as in the 
proof of Theorem 3.6 except for the signs: 

\Sdp"-mJ(m)\ < \p\"-m-k-\p\n~m. 

For n odd and m odd, or for n even and m even, /?""m > 0 and J(m) < 0, and we have 

0 > 4sdp"-mJ(m) > \l2"-m -1 > -1 

for n - m > k, n -m even, making \Hn I am] = Hn_m -1. 
For n even and m odd, or for n odd and m even, P"~m < 0 and J(m) < 0; 

0 < Sdp"-mJ(m) < 1 - 1 / 2"-m < 1 

for «-/w odd, n-m>k, and [#„ / a m ] = #„_m, finishing the proof. D 

Theorem3.9: [H„ Iam + 1/2] = H„_m,n>m,n-m>k + 2. 

Theorem 3.9 is proved by using the methods of Theorems 3.2 and 3.7 to operate on (3.8). 

Theorem 3.10: Hn = \ca" + 1/2], n> k, where c = (Hl -pH0)lS. 
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Proof: By (1.3) and (1.4), 
can + 1/2 = can + d$n-dpn + 1/2 = Hn-dfin + 1/2. 

Divide each term of inequality (3.2) by V5 to write 

\dpn\<{\f5\n~k -\(3\n)l S <{\-H2n)l S <\I2, n>k. 

If n is even, then /?" > 0, and 0>dj5n > -1 / 2 . Add 1/2 to each term to determine that 1 > 1/2 — 
dJ3n > 0. If w is odd, then £" < 0, and 0 < -d(in < 1 / 2 gives 0 < 1 / 2 - dfin < 1 upon adding .1/2 
to each term. In either case, Hn = [can +1 / 2]. D 

Corollary 3.10: Ln = [a" +1 / 2] for the Lucas numbers (Ln),n>2. 

Corollary 3.10 appears in [4]. 

4. THE GENERAL CASE: (Hn) WHERE A = B O R 0 < 2 A < B 

In comparing the ten theorems of Sections 2 and 3, notice close agreement except for 
whether subscripts are odd or even, as expected from (1.9) and (1.10). The following results are 
true for both the Fibonacci and Lucas cases, and hence for all {Hn}, where we take k from Fk_Y < 
H0 = B-A<Fk+1ifA*B,mdftomFk<A<Fk+li£A = B. 

Theorem. 4.1: [ccHn] = Hn+l or Hn+l -\n>k. 

Theorem4.2: [aHn +l/2] = Hn+l9 n> k + 2. 

Theorem 4.3: [Hn I a] = Hn_x or Hn_x - 1 , n>k. 

Theorem 4.4: [Hn / a + l/2] = H„_l9 n>k+-2. 

Theorem 4.5: [(Hn+\)l a] = Hn_v n>k + 3. 

Theorem4.6: [amHn] = Hn+m or Hn+m-l, n>m + k + 2,m>2. 

Theorem4.7: [amHn +1/2] = H„+m, n> m + k + 2,m> 2. 

Theorem4.8 [HJam] = Hn_m or Hn_m-\ n>m + k,m>2. 

Theorem4.9: [Hn I am + l/2] = Hn_m, n>m + k + 2,rn>2. 

Theorem 4.10: [can + l /2] = H„, c = (Hx -/3HQ)lS, n>k. 

We can extend Theorems 4.1 through 4.10 for negative subscripts. Since (-1)"+1F_„ = F„, 
\F_n\= Fn, Theorems 2.1 through 2.10 apply for sequences having \F_n\ or \AF_n\ as the w* term. 
We can apply Theorems 3.1 through 3.10 for {H*„} whereH*n = \H-„\ as well if we extend the 
definition of {Hn} for negative subscripts so that (1.1) becomes 

H_n = AF_n_2+BF_n_x = A(-iy+3F„+2 + B(-l)"+2 Fn+l, 
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H_n = (-\)"(BF„+1 - AF„+2) = (-\)"H\ , (4.1) 

where {H*„} is the conjugate sequence [3] for {Hn}, H*n = H*n-i + H*n-i, H*o =B- A, H\ -
B-2A = A\ H*2 = 2B-3A = B*. Notice that \H_„\=(-A*)Fn_2 +B*Fn_l = H\, where {H*n} 
is one of the sequences {Hn} with positive subscripts. Thus, Theorems 3.1 through 3.10 and 4.1 
through 4.10 can be extended to {Hn} with negative subscripts by taking \Hn\= H*n in all the 
theorem statements. 
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