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1. INTROBUCTION 

The Lucas sequences {Un(P, 0 } , with parameters P and g, are defined by UQ(P, Q) = 0, 
^ ( P , 0 = 1, and 

Un(P, 0 = PU^iP, 0-QUn_2(P, 0 for n > 2, 

and the "associated" Lucas sequences {Vn(P, 0 } are defined similarly with initial terms equal to 
2 and P, for n = 0 and 1, respectively. The sequences of Fibonacci numbers and Lucas numbers 
are, of course, {Fn} = {U„(l, -1)} and {Ln} = {V„(\, -1)}. 

Several authors (e.g.,[3], [1], [6]) have discussed the conies whose equations are satisfied by 
pairs of successive terms of the Lucas sequences. In particular, it has been shown that (x, y) -
K , MVH) satisfies y2 -Pxy + Qx2 +eQn = 0, where w„ = U„(P, Q)\fe = -1 and w„ = F„(P, 0 
if e = P2 -4Q.lt has apparently not been recognized that the hyperbolas y2- Pxy + Q^ +eR = 0, 
where R = 1 if Q = 1 and i? = ±lif(2 = - l characterize the Lucas sequences when ^ = - 1 , and the 
associated Lucas sequences when e- P2 -AQ is square-free; that is, the set of lattice points on 
these conies is precisely the set of pairs of consecutive terms of {Un(P,±l)} if e - - 1 , and of 
{Vn(P, ± 1)} if e = P2 - 4Q is square-free. Accordingly, we shall prove the converse of the results 
of [3] and [1] by showing that no lattice points exist for the above hyperbolas if Q = ±1 other than 
(ww, wn+l) [provided that when wn = V„(P, 0 , the discriminant D is square-free]. 

Using the above results, we then construct, for each of the sequences {Un(P, -1)}, 
{Un{P, 1)}, and {Vn(P, 1)}, a polynomial in two variables of degree 5, and a polynomial of degree 
9 for {Vn(P, -1)} whose positive values, for positive integral values of the variables, are precisely 
the terms of the sequence. This extends the results of Jones [4] and [5], who obtained a fifth-
degree polynomial whose positive values are the Fibonacci numbers and a ninth-degree 
polynomial whose positive values are the Lucas numbers. 

2. CONICS CHARACTERIZING THE LUCAS SEQUENCES 

Assume P > 0. To simplify notation, we let Un = U„(P, -1), V„ = V„(P9 -1), un = Un(P, 1), 
and vn = Vn{P, 1). A proof of the sufficiency in our theorems occurs as a general result in [3]; 
however, we include an alternate inductive proof in Theorem 1 for completeness. 

Theorem 1: Let x and y be positive integers. The pair (x, y) is a solution of 

y2-Pxy-x2 = ±l (1) 

iff there exists a positive integer n such that x-Un and>> = Un+l. 

Proof: We show, first, that U2
+l - PUn+lUn - U2 = (-1)", by induction. 

If n = 1, Ul = l and U2 = P and the result clearly holds. Assume U2 -PUJJ^-U^ = 
(-I)"-1. Then 
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U2
n+l - PUn+lU„ - Ul = (PUn + U^f - P(PU„ + U„.0U„ - U2„ 

= U2
n(P2 -P2 -l) + PU„U„_1(2-l) + Ul1 

= -i(u2„-PU„un„l-ull) = (-ir. 
To see that there are no other solutions of (1) in positive integers, suppose there exist solu-

tions not of the form (U„, U„+l). Let x be the least positive integer such that, for some positive 
integer j , (x,y) is a solution of (1) and (x,y)*(U„,Un+l) for any positive integer n. Since 
(1, P) = (Ul9 U2) satisfies (1), x > 1. Let x0 = y-Px and y0 = x. We show that 0 < x0 < x and 
that (xQ,y0) satisfies (1). Since x>l, 0 = y2-Pxy-x2 +1 = y(y-Px)-x2 ±l = yx0 -x2 ±1 
implies xQ>0, and from >x0±l = x2, we have (Px + x0)x0 ±1 = x2, i.e., Pxx0 ±1 = x2 - x 2 , 
implying that JC0 <JC. Now, 

j>o-^o*o-*o=*2-^(y-^)^^ 
Thus, (x0, yQ) is a solution. By the induction hypothesis, there exists an n such that x0 = f/w and 
J;o=^«+i- T h e n x = yo = u

n+i a n d 

j , = Px + x0 = Py0 +x0= PUn+l +Un = Un+2, 

contradicting our assumption concerning (x, y). 
According to Dickson ([2], Vol. 1, p. 405), Lucas [7] proved that, if x m&y are consecutive 

Fibonacci numbers, then (x,y) is a lattice point on one of the hyperbolas y2 -xy-x2 = ±1, and 
J. Wasteels [12] proved the converse in 1902. 

Theorem 2: Let x and y be positive integers, x < y. The pair (x, y) is a solution of 

y2-Pyx + x2 = 1, P>2, (2) 

iff there exists a positive integer n such that x = un mdy = ww+1. 
Proof: We note that, because of the symmetry, the assumption that x < y is made without 

loss of generality. The proof parallels that of Theorem 1. (In proving the necessity, one lets 
x0 = Px-y and y0 = x, and easily obtains x0 < x, and x0y - x2 -1 < xy => x0 < x.) 

It is known that, if D = P2 +4, the general solution in positive integers of y2 -Dx2 = ±4 is 
<X y) = (Un,Vn), md if D = P2 -4, the general solution of y2 - Dx2 =4 is (un, v„). This may 
be shown using the known general solutions in terms of the fundamental solutions (for example, 
from (xn +ynjD)/2 = [(x0 +y0JD)llY for x2 -Dy2 = 4; see Mordell [9, p. 55], and Dickson 
[2, Ch. XII]). Using Theorems 1 and 2, we provide an alternate derivation of the general solution 
in terms of Lucas sequences of these Fermat-Pell equations. 

Corollary 1: The solutions of s2 - Dt2 = ±4 for D = P2 + 4 and of s2 - D/2 = 4 for D = P2 - 4 
are precisely the pairs (/, s) = (U„, Vn) and (u„, v„), respectively. 

Proof: It is well known that V2(P,Q)-D-U2(P,Q) = 4Qn [11, p. 44]. Suppose (s,t) is 
any solution of s2 - Dt2 = ±4 (D = P2 + 4), i.e., of s2 - P2t2 = ±4 + 4t2. It is clear that s and Pt 
have the same parity, so y = (s+Pt) 12 is an integer. Upon substituting for s, 
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(2y-Pt)2 -P2t2 =±4 + 4t2 =>4j/2 -4Pty = ±4 + 4t2. 

That is, y2 - Pyt -12 = ±1. By Theorem I, y = Un+1 and t = [/„ for some n. Now it is known 
that V„(P, Q) = 2t/M+1(P, 0 - Pt/„(P, 0 [11, p. 44], implying that s = Vn. 

The proof of the necessity for s2 -Dr2 = 4, Z) = P2 - 4 is similar. 

3. CONICS CHARACTERIZING THE ASSOCIATED LUCAS SEQUENCES 

It is interesting that the solutions of the hyperbolas y2 -Pxy-x2 = ±D, for P> = P 2 +4 , 
include (Vn,Vn+l) for n>0, and the solutions of y2 -Pxy +x2 ~-D7 for D-P2 - 4 , include 
(vn> vw+i) for ^ > 0 [3], but that there may be, in general, additional pairs of integral solutions. A 
case in point: y2 - 4xy - x2 = 20 has (x, y) = (1,7) as a solution (but Vn*l for any n > 0). It 
may be shown, however, that there are no additional solutions if D is square-free. 

Theorem 3: Let P 2 +4 = D = a2d, d square-free. The set of lattice points with positive coordi-
nates on the hyperbolas 

y2 -Pyx-x2 =±D (3) 

is precisely the set {(Vn,Vn+l)} (n>0) iff the sets of x-coordinates of the solution sets of 
x2 - Dy2 = ±4 and x2 - dz2 = ±4 are equal. 

Proof: As remarked above, (Vn,Vn+l) satisfies (3) for all n>0. Assume that x,y>0 and 
(x, y) is a solution of (3). Now, since P and D have the same parity, (3) implies that 

Px + ̂ JD(x2 ±4)1/2 = [Px + ajd(x2 ± 4) y = 

is an integer iff d(x2 ±4) is a square; that is, iff, for some integer z, x2±4 = dz2, i.e., 
x2 -dz2 = ±4. Thus, the set of lattice points on (3) is precisely the set {Vn, Vn+l} iff x = Vn for 
some n > 0. By Corollary 1, on the other hand, the pair (x, y) is a solution of x2 - Dy2 = ±4 iff 
x~Vn for some n > 0. This proves the theorem. 

If D is square-free, then d = D, and we immediately have 

Corollary 2: Let x and y be positive integers, and D - P2 +4 be square-free. The pair (x, y) is 
a solution of j 2 -Pxy-x2 =±D iff there exists a nonnegative integer n such that x-Vn and 
y = vn+v 

We note that the equations x2 -Dy2 = ±4 andx2 -dz2 = ±4 of Theorem 3 may have solu-
tion sets having identical x-coordinates when D^d. For example, if D = 4d and d = 2 or 3 
(mod 4), since in these cases z must he even. 

We may establish, in exactly the same way as for Theorem 3, the corresponding theorem for 
y2 - Pyx + x2 = -D, with D = P2 - 4. We state only the analogous corollary. 

Corollary 3: Let D = P2 -4 be square-free and x and j ; be positive integers. The pair (x, y) is a 
solution of 

y2-Pyx + x2=-D (4) 

if there exists a nonnegative integer n such that x = vn mdy = vn+l. 
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4. DIOPHANTINE REPRESENTATION OF THE SEQUENCES 

The set of terms of any Lucas sequence is a recursively enumerable set, and such sets have 
been shown to be Diophantine [8]. That is, for each recursively enumerable set S, there exists a 
polynomial 2P with integral coefficients, in variables xx,...,xn, such that x GS iff there exist 
positive integers yx, ...3>'„_1 such that &(x,yl9 ...,>'„_1) =0. As a consequence, it is possible to 
construct a polynomial whose positive values are precisely the elements of S. The construction is 
due to Putnam [10], who observed that x(l-2?2) has the desired property. Using equations (1), 
(2), (3), (4), and Corollary 1, we now obtain such polynomials for the set of terms of the 
sequences {Un(P, -1)}, {Un(P, 1)}, {Vn{P, -1)}, and {Vn(P, 1)}. 

Theorem 5: Let GU(P9Q) denote the set of terms of the sequence {Un(P9Q)}9 and Y(P,Q) 
denote the set of terms of the sequence {Vn(P, Q)}. Then, if x and y assume all positive integral 
values, the set S is identical to the set of positive values of the polynomial 

(i) x[2-(y2-Pxy-x2)2] if S = ̂ ( P , -1), 
(ii) x[2 - (y2 -Pxy + x2)2] ifS = %(P, 1), P > 2, 

(Hi) y[l - ((y2 - Dx2)2 -16)2] if S = Y(P, -1), D = P2 + 4, 
(iv) y[l - ((y2 - Dx2) - 4)2] if S =Y(P, 1), D = P2 - 4. 

Proof: In view of Theorems 1 and 2 and Corollary 1, the proof is obvious, provided we 
show that y2 - Pxy - x2 and y2 - Pxy + x2 (P> 2) are never 0 for x and y integers. However, if 
either equals 0, then 

Px±x^P2-4 PX±XTJP2+4 y = or y = - (P>2); 
2 ' 2 

clearly, since D = P2 ± 4 is not a square, y is irrational for all integral x values. 
By Corollary 1, the polynomials in (i) and (ii) may be given, alternatively, as 

\2" 

and 

l-((y2-Dx2)2-l6y 

\-({y2-Dx2)-4)2 

forD = Pz+4, 

, forD = P2-4, 

respectively. And, by Corollaries 2 and 3, the polynomials in (iii) and (iv) may be given, alterna-
tively, if D is square-free, as 

i-((y2 - Pyx-x2)2 -(P2 +4)2)2 

and 
x[l - (y2 - Pxy + x2 + P2 - 4)2], 

respectively; however, in case (i) of the theorem, the degree of the alternative is higher. 

For a summary of results on polynomials representing various additional sets, we refer the 
reader to [11, Ch. 3,111]. 
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NEW EDITORIAL POLICIES 

The Board of Directors of The Fibonacci Association during their last business meeting 
voted to incorporate the following two editorial policies effective January 1, 1995. 

1. All articles submitted for publication in The Fibonacci Quarterly will be 
blind refereed. 

2. In place of Assistant Editors, The Fibonacci Quarterly will change to 
utilization of an Editorial Board. 
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