SOME INFINITE SERIES SUMMATIONS USING POWER SERIES
EVALUATED AT A MATRIX

R. S. Melham and A. G. Shannon

University of Technology, Sydney 2007, Australia
(Submitted May 1993)

1. INTRODUCTION

In the notation of Horadam [5], write
W,=W,(a,b; p,q), 1.1)
so that
VVnszVn—l—qVVn—Za I/V():a,le:b, n'>-2 (12)

©

The sequence {7}, , can be extended to negative subscripts by the use of (1.2) and, with this
understanding, we simply write {¥, }.
The n™ terms of the well-known Fibonacci and Lucas sequences are then

'F;I = PV”(O) 1; 17 —1)’
{Ln =,(2,11,- 1) (13)
More generally, we write
U, =w,0,% p,q),
" " 1.4
{Vn =W, (2, p; 0, D: (14

where {U,} and {V/,} are the fundamental and primordial sequences, respectively, generated by
(1.2). They have been studied extensively, particularly by Lucas [7].
The Binet forms for U, and V,, are

u =5 (1.5)
a-p
V,=a"+p", (1.6)
where
_pP -4 _p—P' -4 .
a= and f=—-"+-—— (1.7)
2 2
are the roots, assumed distinct, of
x>~ px+q=0. (1.8)
Write
A=(a-p)=p’-4q (1.9)
The Q-matrix
Q= G (1)) (1.10)

has been studied widely in connection with the Fibonacci numbers and has the property
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n F+1 F ) .
=7 " |, naninteger (see [4]). 1.11
=T 5 ger (see [4) (1.11)

Filipponi and Horadam [2] considered the matrix

ok (e XE
Qk,x_xQ _( xEc xﬁ}f-—l > (112)

where x is an arbitrary real number and £ is a nonnegative integer, and noted that
QI?,x :[x Fkn+1 x Em ) (113)

n n
x"F, x"F,_,

Then they evaluated certain power series at the matrix 0, , to obtain summation identities involv-
ing the Fibonacci and Lucas numbers. The identities had the following forms:

S g.f (xgt )gﬁ:f(xqﬁé‘), L
e, - £t )Jgf(x;ﬁ’z‘ ) s,
San - b (x5 )\—E¢2f(x¢’f), -
goanx"L,m — F g+ S (x), (117)
h
o f(x)= ioanx” (1.18)
and

1445 _1-45
2 2

They also indicated how their procedures could be generalized to apply to W,(0,1; p,—1) and
W.(2, p, p,— D).

The object of this paper is to extend (1.14)-(1.17) to apply to the more general fundamental
and primordial sequences of Lucas as defined in (1.4). Then, specializing to the Chebyshev poly-
nomials of the first and second kinds, we obtain infinite series summations involving the sine and
cosine functions that we believe are new.

#,

, #

2. THE MATRIX 4, .

(P -4
A_(l O). @.1)

14 [FEB.

Define the matrix 4 by

Then it can be shown by induction that
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n U -
A :(67:1 —q@]}il)’ n>0. (2.2)

Associated with 4, we define the matrix 4, . by
Ay =xd = (xg;: e ) 23)
where x is an arbitrary real number and £ is a nonnegative integer.
To prove the following lemma, we need to note that
Ve = Uk =qUs 15 (2.4)
Up ~UpnUy =47 (2.5)
Each can be proved using Binet forms, and (2.5) is in fact a generalization of Simson's identity for
Fibonacci numbers.
Lemma 1: The eigenvalues of 4, , are xa* and xg*.
Proof: Using (2.4) and (2.5), we see that the characteristic equation of 4, , simplifies to
1*—xV,t+x*q* =0. (2.6)

Recalling that V), = o + 8% and g = aff, we see, by substitution, that the eigenvalues are as
stated. [J
Another important property of 4, . is

n
x Ukn+1 _qukn

AL = (xd*y =x"A" = ( ) by (2.2). 2.7

XUy —%"qUp
The following is easily proved by induction:
a"=aU,—qU, ,, nz0. (2.8)

Of course, (2.8) remains valid if we replace a by f.

3. THE MAIN RESULT

Assuming that f as defined in (1.18) has a domain of convergence which includes xa® and
xf* we have, using (2.7),

o (=]

o 2 anxnUkn+l —qz anxnUkn

f(Ak,x) = ZanAl?,x = n=£ :lo=0 .

=0 Z anxnUkn —qz anxnUkn—l
n=0

n=0

3.1

On the other hand, from the theory of matrices [3], it is known that f(A4, ) =cy/ +¢ 4, .,
where I is the identity 2 x 2 matrix and where ¢, and ¢, can be obtained by solving
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{co + clxak = f(xak),
Co +c1x,8k = f(x,Bk)
That is,

Fd )= (xa"f(xﬂ")—xﬂ"f(xa")) I+(f(xa")—f(xﬂ")) A 52)

x(a* - B*) x(a* - p*)
This is Sylvester's matrix interpolation formula [8]. Noting that a* — g* = JA U, and using
(2.8), the right side of (3.2) can be simplified to yield

af(xa"i/—_ﬂf(xﬂ") o (B - £ (xa"))

A )= A VA 4 33

TAD= ey 16" af 6B - (xa) @3
i "y

These observations lead to our main result.

Theorem 1: 1f f as defined in (1.18) has a domain of convergence which includes xa* and x*,
then '

e, of (xa*) - Bf (xB*)
Ut = > 34
ngoanx el T (3.4)

o fed®) - f(xB)

Un: P 35
2"Vl A (35)
& o Bfxa®)-of (xB°)

;)anx Ukn—l - CI\/K 5 (36)
YV, = fxa)+ £ (o), G7)
n=0

We note that (3.4)-(3.6) are obtained by comparing (3.1) and (3.3). Identity (3.7) is obtained by
using (2.4), (3.4), and (3.6).

Tt is easily seen that (3.4)-(3.7) generalize (1.14)-(1.17) and also (5.6)-(5.17) of [2]. In the
next section we apply (3.5) and (3.7) to the Chebyshev polynomials and obtain infinite sums
involving the sine and cosine functions.

4. APPLICATIONS

Let {T,(x)},, and {S,(x)}:, denote the Chebyshev polynomials of the first and second
kinds, respectively. Then
sinn6
sinf r, x=cosf, n=0.
T, (x) = cosné

S, (%)=
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Indeed {S,(x)}., and {27,(x)}., are the fundamental and primordial sequences, respectively,
generated by (1.2), where p =2cos6, g =1. Thus,

a=¢? and f=e, (CH))

which are obtained by solving #* —2coséf +1=0. Further information about the Chebyshev poly-
nomials can be found, for example, in [1] and [6].

To begin, we consider the following well-known power series each of which has the complex
plane as its domain of convergence:

( I)n 2n+1
sinz = Z el (42)
( n 2n
cosz = Z (2n)' R (43)
. © Z2n+1
sinhz = g’)(z—n;ﬁ’ 4.4)
© Z2n
coshz = Z;) 2 4.5)

Now in (3.5), taking U, = S‘“"f’ and replacing f by the functions in (4.2)-(4.5), we obtain,

respectively,
(-1 x> sin k(2n+1)8

nZ:;) @n+1)l = cos(x cosk®) sinh( x sin £9), (4.6)
n+l_2n -
Z SUlla LS sin( x cosk®) sinh(x sin k6), 4.7
n=0 (271)|
) 2n+1 -
3 X" sink(2n+ 16 _ sin( x sin k@) cosh(x cosk6), (4.8)
n=0 (21’1 + 1)‘
>= (S;n ;kne = sin(x sin k6) sinh( ¥ cosk6). (4.9)
n=0 ,

In (3.7), taking V, =2cosn@ and replacing f by the functions in (4.2)-(4.5), we obtain,
respectively,

n 2n+l
Z D" a cisll;'(Zn +6 _ sin(x cosk@) cosh(x sin £6), (4.10)
n
n_2n
Z (=)"x (2 C)O'Sane = cos(x cosk@) cosh(x sin £6), (4.11)
n=0 n
x> cosk(2n+1)8

= cos(x sin k) sinh( x cosk6), (4.12)

zg 2n+1)!
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i " cos2kn6
n=0 (2 )'
At this point, we note that (4.6), (4.7), (4.10), and (4.11) generalize (40), (42), (41), and

(43), respectively, of Walton [9].
As an example of the method, we prove (4.11).

= cos(x sin £6) cosh(x cosk6). (4.13)

Proof of (4.11): 1In (3.7), taking V, =2cosn@ and f(x)=cosx we have, using (4.1) and
4.3),

ik

i (=1)"x*"2 cos2kn®

2wl )

= cos(xe

o0 4 pmikd o0 _ pmikd
=2cos| x| ——— | |cos| x| ———
2 2

=2 cos(x coskb) cos(ix sin k6)
=2 cos(x coskd) cosh(xsin £9),

)+ cos(xe

which yields the result. O

We now obtain further interesting sums by employing some power series which occur in [1].
We restate them here for easy reference:

loge(l+%)=z(_1r)l ’—;— |z|<|m], (4.14)
n=1
© n 22n+1
tan- ( ) Z (o +1) —5mr>  12l<iml, (4.15)
© ¢ 1\N 2n
sec(i}z(—llﬁﬂiz—, |2/<Z|m|, (4.16)
m) = (2n)! m™" 2
z © ( l)n 122n(22n_1)an ZZn—l T
tan| — | = . s <—|m], 4.17
(m) >, o e |A<im 4.17)
n=1:~2n _ 2n-1
cosec(-z—) n_ Z( D g Y DB, zzn_l , 0<zl< 7|m), (4.18)
m) z 3 n)! m
© na2n 2n-1
cot(—z—)—ﬂ =y (_1)(22)'32” : 22,,_, , 0<zl< n|m). (4.19)
m) z 3 n)! m

Here, B, and E, are the Bernoulli and Euler numbers, respectively.
In (3.5), taking U, =128 and replacing f by the functions in (4.14)-(4.19) we obtain,
respectively,
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(- 1)" ! "smkn9 1 m+ xe'™?
=;log| ———5 4.20
> TRl e ) B (4.20)
)" x> sink(2n+1)0 1 _(2mxsink6
Z ( ) l 2(n+1 ) = _tanh 1( mf = 2 > |xl<lm|> (421)
n=0 (2n+T)m m* +x
2 (=1)" Ey,x™" sin 2kn@ __ 2sin(*5)sinh (*sk7) .
Z 2n - 2xcoskd 2xsink@\’ |x|<—|m|, (422)
n=0 (2m)!m cos(2xeesk?) + cosh(2xsink0) 2
5 (-1)"122"(2*" ~1)B, ¥ sin k(2n-1)0
@n)lm*!
. (4.23)
Sinh(sz'l;kﬂ) I l ﬂ'l |
= - ,  |xX|I<—|m
COS(%Q)-I-COS})(Z)CS":]‘B) 2 5
i (-1)"1(2*" -2)B,,x*" " sin k(2n-1)0
el (zn)!mZn—l
. (4.24)
2COS(x°°Sk6)Sinh(£§ﬂkﬁ) msin kO
= + ,  0<x|< 7|m|,
COS(W) Cosh(szmkH) x

i (-D)"2* B, x*" ' sink(2n-1)@

@n)!tm*! (425)
4.
= Sinh(l’%’ﬁ) msin k9 0 <|x|< 7z|m|
- cos(Zxc;jskB) _ COSh(sz’i:kg) x > ’

As stated at the beginning of Section 3, the domains of validity are determined by the
requirement that the eigenvalues, in this case xe™® and xe™™’ must lie within the radius of conver-
gence of the relevant power series. The proofs follow essentially the same lines as the proof of
(4.11) demonstrated earlier, employing well-known properties of the relevant functions.

Finally in (3.7), taking ¥, =2cosn@ and replacing f by the functions in (4.14)-(4.19), we
obtain, respectively,

n—1 n 2
z( 1) cosan llog 1+2xcosk0+£_’ (x| <. (4.26)
2 7° m m*

1n 2n+l1
Z( ) ¥ cosk@n+1)0 _ 1 tan-l(me_cosfﬁj, (x| <], “27)

@n+m*™! 2 m* — x*
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(4.28)

>

i (—1)"E,,x*" cos2knf _ 2 cos(=2k0) cosh(*nkl)

T
= - ,  xl<—=|ml|
"o @n)tm* cos(—2x°r‘;fk‘9)+cosh(——zxsl‘;,"‘g) Al 2 |

i (-D"'22"(2*" ~1)B,, x*" " cosk(2n—1)8
n=1

@n)!m*!

(4.29)
_ sin(lx%:ﬂé) x
= COS(Z%@‘)‘FCOSh(Zx_S;'nIM) s IXI< 5 Imlj

i (~D"(2*" -2)B,,x*" " cosk(2n-1)8

el @n)lm*™!
(4.30)

ZSin(xc?;kg)COSh(XSi;kﬁ) mcosk@
= cosh(sz’i:kﬁ) _ cos(lxc;skﬁ) -

» O <|x|< z|m],

i (=1)"2*" B, x*" " cosk(2n-1)8

n=1 (2n)!m2n—1
(4.31)

+ [ 2xc0s kO
_ Sll’l( ” )

= —
COSh-\ZxSrL:‘l kB) _ COS(Zxcr:skB)

3 mcosk@

. O<x|< 7|m|.
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