A GENERALIZATION OF THE CATALAN IDENTITY AND SOME CONSEQUENCES

R. S. Melham and A. G. Shannon

University of Technology, Sydney 2007, Australia (Submitted June 1993)

1. INTRODUCTION

The Catalan identity

$$F_{n-r}F_{n+r} - F_n^2 = (-1)^{n-r+1}F_r^2$$
(1.1)

has several generalizations. Here we obtain a new generalization and use it to generalize the Gelin-Cesàro identity

$$F_n^4 - F_{n-2}F_{n-1}F_{n+1}F_{n+2} = 1, (1.2)$$

which was stated by Gelin and proved by Cesàro (see [1], p. 401). Furthermore, we establish that a certain expression arising from three-term recurrence relations is a perfect square, and this generalizes previous work.

Using the notation of Horadam [2], let

$$W_n = W_n(a, b; p, q) \tag{1.3}$$

so that

$$W_n = pW_{n-1} - qW_{n-2}, W_0 = a, W_1 = b, n \ge 2.$$
 (1.4)

If α , β , assumed distinct, are the roots of

$$\lambda^2 - p\lambda + q = 0, \tag{1.5}$$

we have the Binet form [2]

$$W_n = \frac{A\alpha^n - B\beta^n}{\alpha - \beta},\tag{1.6}$$

in which

$$\begin{cases} A = b - a\beta \\ B = b - a\alpha. \end{cases}$$
(1.7)

Write

$$e = pab - qa^2 - b^2 = -AB.$$
 (1.8)

As usual, $U_n = W_n(0, 1; p, q)$ is the fundamental sequence of Lucas [4].

2. THE MAIN RESULT

We now generalize the Catalan identity and obtain some consequences.

Theorem: For $W_n = W_n(a, b; p, q)$ and $Y_n = W_n(a_1, b_1; p, q)$,

$$W_n Y_{n+r+s} - W_{n+r} Y_{n+s} = \Psi(s) q^n U_r, \qquad (2.1)$$

where

$$\Psi(s) = (pa_1b - qaa_1 - bb_1)U_s + (ab_1 - a_1b)U_{s+1}$$

82

[FEB.

Proof: Using the Binet forms for W_n and Y_n we obtain, after some algebra,

$$W_n Y_{n+r+s} - W_{n+r} Y_{n+s} = \frac{(AB_1\beta^s - A_1B\alpha^s)q^n U_r}{\alpha - \beta}$$

where, in the Binet form for Y_n ,

$$\begin{cases} A_1 = b_1 - a_1 \beta, \\ B_1 = b_1 - a_1 \alpha. \end{cases}$$
(2.2)

Now, using (1.7) and (2.2) we see, after simplifying, that $\frac{AB_1\beta^s - A_1B\alpha^s}{\alpha - \beta}$ reduces to $\Psi(s)$. \Box

In (2.1), replacing n by n-r and s by r gives

$$W_{n-r}Y_{n+r} - W_nY_n = \Psi(r)q^{n-r}U_r.$$
 (2.3)

Replacing r by r + 1 in (2.3), we have

$$W_{n-r-1}Y_{n+r+1} - W_nY_n = \Psi(r+1)q^{n-r-1}U_{r+1}.$$
(2.4)

Adding (2.3) and (2.4) gives

$$W_{n-r}Y_{n+r} + W_{n-r-1}Y_{n+r+1} = 2W_nY_n + \Psi(r)q^{n-r}U_r + \Psi(r+1)q^{n-r-1}U_{r+1}.$$
(2.5)

Subtracting (2.4) from (2.3) gives

$$W_{n-r}Y_{n+r} - W_{n-r-1}Y_{n+r+1} = \Psi(r)q^{n-r}U_r - \Psi(r+1)q^{n-r-1}U_{r+1}.$$
(2.6)

Squaring (2.5) and subtracting the square of (2.6), we obtain

$$W_{n-r-1}W_{n-r}Y_{n+r}Y_{n+r+1} = W_n^2 Y_n^2 + W_n Y_n q^{n-r-1} (q\Psi(r)U_r + \Psi(r+1)U_{r+1}) + \Psi(r)\Psi(r+1)q^{2n-2r-1}U_r U_{r+1}.$$
(2.7)

Putting r = 1 in (2.7) yields

$$W_{n-2}W_{n-1}Y_{n+1}Y_{n+2} = W_n^2 Y_n^2 + W_n Y_n q^{n-2} (q\Psi(1) + p\Psi(2)) + p\Psi(1)\Psi(2)q^{2n-3}.$$
 (2.8)

In (2.1), substituting r = -1, s = m - n + 1 and noting that $U_{-1} = -q^{-1}$, we obtain

$$W_n Y_m - W_{n-1} Y_{m+1} = -\Psi(m-n+1)q^{n-1}.$$
(2.9)

Furthermore, if n = m - 1, then (2.9) yields

$$W_{m-1}Y_m - W_{m-2}Y_{m+1} = -\Psi(2)q^{m-2}.$$
(2.10)

Finally, from (2.1), it follows that

$$(W_n Y_{n+r+s} - W_{n+r} Y_{n+s})^2 = \Psi^2(s) q^{2n} U_r^2,$$

so that

$$4W_nW_{n+r}Y_{n+s}Y_{n+r+s} + \Psi^2(s)q^{2n}U_r^2 = (W_nY_{n+r+s} + W_{n+r}Y_{n+s})^2$$

thus establishing that

1995]

83

A GENERALIZATION OF THE CATALAN IDENTITY AND SOME CONSEQUENCES

$$4W_n W_{n+r} Y_{n+s} Y_{n+r+s} + \Psi^2(s) q^{2n} U_r^2 \tag{2.11}$$

is a perfect square for nonnegative integers n, r, s and integers a, b, a_1, b_1, p, q .

3. RELATION TO OTHER GENERALIZATIONS

The results of the previous section generalize results of Horadam and Shannon [3] who, in turn, generalized work of Morgado [5] on the Fibonacci numbers. It suffices then to indicate how our work generalizes that of Horadam and Shannon.

In (2.1), when $(a_1, b_1) = (a, b)$, we have $\{W_n\} = \{Y_n\}$ and $\Psi(s) = eU_s$, so that (2.1) becomes

$$W_n W_{n+r+s} - W_{n+r} W_{n+s} = eq^n U_r U_s,$$

which Horadam and Shannon gave as a generalization of the Catalan identity. Under the same circumstances, noting that $\Psi(1) = e$ and $\Psi(2) = ep$, (2.8) reduces to

$$W_{n-2}W_{n-1}W_{n+1}W_{n+2} = W_n^4 + W_n^2 eq^{n-2}(p^2+q) + e^2q^{2n-3}p^2,$$

which Horadam and Shannon gave as a generalization of the Gelin-Cesàro identity.

Similarly, (2.9) and (2.10) reduce, respectively, to

$$W_n W_m - W_{n-1} W_{m+1} = -eq^{n-1} U_{m-n+1}$$

$$W_n W_{n-1} - W_{n-2} W_{n+1} = -epq^{n-2},$$

which are generalizations of results for Fibonacci numbers due to D'Ocagne (see [1], p. 402).

Finally, the expression (2.11) reduces to

$$4W_nW_{n+r}W_{n+s}W_{n+r+s} + e^2q^{2n}U_r^2U_s^2,$$

which was proved by Horadam and Shannon to be a perfect square.

ACKNOWLEDGMENT

We gratefully acknowledge the comments of an anonymous referee whose suggestions have considerably streamlined the presentation of this paper.

REFERENCES

- 1. L. E. Dickson. History of the Theory of Numbers. Vol. 1. New York: Chelsea, 1966.
- 2. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." *The Fibonacci Quarterly* **3.2** (1965):161-76.
- 3. A. F. Horadam & A. G. Shannon. "Generalization of Identities of Catalan and Others." Portugaliae Mathematica 44 (1987):137-48.
- 4. E. Lucas. Théorie des Nombres. Paris: Albert Blanchard, 1961.
- 5. J. Morgado. "Some Remarks on an Identity of Catalan Concerning the Fibonacci Numbers." *Portugaliae Mathematica* **39** (1980):341-48.

AMS Classification Numbers: 11B37, 11B39

84

FEB.