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1. INTRODUCTION 

The Catalan identity 
F„_rF„+r-F„2 = (-irr+1Fr

2 (1.1) 

has several generalizations. Here we obtain a new generalization and use it to generalize the 
Gelin-Cesaro identity 

A? ~AI-2AI-IAI+IAI+2 = 1> (1-2) 

which was stated by Gelin and proved by Cesaro (see [1], p. 401). Furthermore, we establish that 
a certain expression arising from three-term recurrence relations is a perfect square, and this 
generalizes previous work. 

Using the notation of Horadam [2], let 

Wn=Wn(a,b;p,q) (1.3) 
so that 

W„=pW„_l~qW„_2,W0=a,JVl=b,n>2. (1.4) 

If a, /?, assumed distinct, are the roots of 

A2-pA + q = 0, (1.5) 

we have the Binet form [2] 

in which 

Write 

W..^SL. (1-6, 
a-p 

\A = b-aj3 
\B-b-aa. (1.7) 

e = pab-qa2-b2=-AB. (1.8) 

As usual, U„ = Wn(0,1; p, q) is the fundamental sequence of Lucas [4]. 

2. THE MAIN RESULT 

We now generalize the Catalan identity and obtain some consequences. 

Theorem: For W„ = W„(a, b; p, q) and Y„ = Wn(au b{, p, q), 

W„rn+r+s-Wn+rrn+s = ^(s)q"Ur, (2.1) 
where 

W(s) = (paxb - qaax - b\ )US + (a\ - axb)Us+l. 
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Proof: Using the Binet forms for Wn and Yn we obtain, after some algebra, 

WY -W Y AMlfi'-A1Ba')q>Ur 
a- P 

where, in the Binet form for Yn9 

[Bl=bl-a1a. K ' 

Now, using (1.7) and (2.2) we see, after simplifying, that AB^~^Ba reduces to *F(,s). D 

In (2.1), replacing n by n—r and s by r gives 

Wn„rYn+r-WnYn = V(r)q"-rUr. (2.3) 

Replacing r by r +1 in (2.3), we have 

W„_rJn^-W„Yn^{r + \)q"-r-lUr+l. (2.4) 

Adding (2.3) and (2.4) gives 

W^^+W^Y^ = WJn + V{r)rrUr + nr + l)rr-%+v (2-5) 

Subtracting (2.4) from (2.3) gives 

W„_rY„+r-W„_r_lYn+r+i^(r)q"-'-Ur-^(r + l)q"-'-1Ur+l. (2.6) 

Squaring (2.5) and subtracting the square of (2.6), we obtain 

Wn_r^n-rYn+rYn^ = KYl + WnYnq"-r-XqV{r)Ur + V(r + l)Ur+1) 
+ x¥(r)x¥{r + \)q1"-2r-lUrUr+l. 

Putting r - 1 in (2.7) yields 

W^W^Y^Y^ = WX +WnYnq"-\qV(\) + pV(2)) + PV(im2)q2"-3. (2.8) 

In (2.1), substituting r = -\,s = m-n + l and noting that £/_j = ~q'x, we obtain 

WnYm-Wn_xYm+l = -V(m-r, + \)q"-\ (2.9) 

Furthermore, if n = m-l, then (2.9)yields 

Wm^Ym-Wm_2Ym+1 = -V{2)qm-\ (2.10) 

Finally, from (2.1), it follows that 

(KY„+r+s -Wn+rYn+sf = V2(s)q2»Ul 
so that 

W„K+rY„+sYn+r+s + V\S)qlnU2
r = (W„Yn+r+s + Wn+rYn+s)2, 

thus establishing that 
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4W„W„+rY„+sY„+r+s + V2(s)q2"U2
r (2.11) 

is a perfect square for nonnegative integers n, r, s and integers a, b, al9 bl9 p, q. 

3. RELATION TO OTHER GENERALIZATIONS 

The results of the previous section generalize results of Horadam and Shannon [3] who, in 
turn, generalized work of Morgado [5] on the Fibonacci numbers. It suffices then to indicate how 
our work generalizes that of Horadam and Shannon. 

In (2.1), when (al5 ̂ ) = (a, b), we have {Wn} = {Y„} and ¥ ( » = eUs9 so that (2.1) becomes 

ww -WW =eanUU 
vvnrvn+r+s vvn+rvvn+s Vll urus> 

which Horadam and Shannon gave as a generalization of the Catalan identity. Under the same 
circumstances, noting that ¥(1) = e and *F(2) = ep, (2.8) reduces to 

W^W^W^W^ = W„4+WZeq"-2(p2
 +q)+e

2q2"-3p2, 

which Horadam and Shannon gave as a generalization of the Gelin-Cesaro identity. 
Similarly, (2.9) and (2.10) reduce, respectively, to 

and 

which are generalizations of results for Fibonacci numbers due to D'Ocagne (see [1], p. 402). 
Finally, the expression (2.11) reduces to 

4WW W W +e2a2nU2U2 

which was proved by Horadam and Shannon to be a perfect square. 
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