A DIFFERENCE-OPERATIONAL APPROACH TO THE MÖBIUS INVERSION FORMULAS

L. C. Hsu*
Institute of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China
(Submitted August 1993)

1. INTRODUCTION

Worth noticing is that the well-known Möbius inversion formulas in the elementary theory of numbers (cf. e.g., [2] and [3]),

$$
\begin{equation*}
f(n)=\sum_{d \mid n} g(d) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
g(n)=\sum_{d \mid n} f(d) \mu(n / d)=\sum_{d \mid n} f(n / d) \mu(d) \tag{2}
\end{equation*}
$$

may be viewed precisely as a discrete analog of the following Newton-Leibniz fundamental formulas

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{s}\right)=\int_{c_{1}}^{x_{1}} \ldots \int_{c_{s}}^{x_{s}} G\left(t_{1}, \ldots, t_{s}\right) d t_{s} \ldots d t_{1} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
G\left(x_{1}, \ldots, x_{s}\right)=\frac{\partial}{\partial x_{1}} \cdots \frac{\partial}{\partial x_{s}} F\left(x_{1}, \ldots, x_{s}\right) \tag{4}
\end{equation*}
$$

wherein the summations of (1) and (2) are taken over all the divisors d of n, and $G\left(t_{1}, \ldots, t_{s}\right)$ is an integrable function so that $F\left(x_{1}, \ldots, x_{s}\right)=0$ when there is some $x_{i}=c_{i}(1 \leq i \leq s)$. This will be made clear in what follows.

Let us use the prime factorization forms for n and d, say $n=p_{1}^{x_{1}} \cdots p_{s}^{x_{s}}$ and $d=p_{1}^{t_{1}} \cdots p_{s}^{t_{s}}, p_{i}$ being distinct primes, x_{i} and t_{i} being nonnegative integers with $0 \leq t_{i} \leq x_{i}(i=1, \ldots, s)$, and replace $f(n)$ and $g(d)$ of (1) by $f((x)) \equiv f\left(x_{1}, \ldots, x_{s}\right)$ and $g((t)) \equiv g\left(t_{1}, \ldots, t_{s}\right)$, respectively. Then one may rewrite (1) and (2) as multiple sums of the following:

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{s}\right)=\sum_{0 \leq t_{i} \leq x_{i}} g\left(t_{1}, \ldots, t_{s}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(x_{1}, \ldots, x_{s}\right)=\sum_{0 \leq t_{i} \leq x_{i}} f\left(x_{i}-t_{1}, \ldots, x_{s}-t_{s}\right) \mu_{1}\left(t_{1}, \ldots, t_{s}\right), \tag{6}
\end{equation*}
$$

where each summation is taken over all the integers $t_{i}(i=1, \ldots, s)$ such that $0 \leq t_{i} \leq x_{i}$, and $\mu_{1}((t)) \equiv \mu_{1}\left(t_{1}, \ldots, t_{s}\right)$ is defined by

$$
\mu_{1}((t))= \begin{cases}(-1)^{t_{1}+\cdots+t_{s}}, & \text { if all } t_{i} \leq 1 \tag{7}\\ 0, & \text { if there is a } t_{i} \geq 2\end{cases}
$$

[^0]Evidently $\mu_{1}((t))=\mu(d)$ is just the classical Möbius function defined for positive integers d with $\mu(1)=1$ (cf. [4]).

Now we introduce the backward difference operator ${\underset{x}{x}}^{\text {and }}$ its inverse Δ_{x}^{-1} by the following:

$$
\begin{equation*}
\Delta_{x} f(x)=f(x)-f(x-1), \Delta_{x}^{-1} g(x)=\sum_{0 \leq t \leq x} g(t) \tag{8}
\end{equation*}
$$

so that $\Delta_{x} \Delta_{x}^{-1} g(x)=g(x), \Delta_{x}^{-1} \Delta_{x} f(x)=f(x)$, and we may denote $\Delta_{x} \Delta_{x}^{-1}=\Delta_{x}^{-1}{\underset{x}{x}}=I$ with $I f(x) \equiv$ $f(x)$, where we assume that $f(x)=g(x)=0$ for $x<0$. Thus, (5) and (6) can be expressed as

$$
\begin{equation*}
f((x))=\Delta_{x_{1}}^{-1} \cdots \Delta_{x_{s}}^{-1} g((x)) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
g((x))=\Delta_{x_{1}} \cdots \Delta_{x_{s}} f((x)) \tag{10}
\end{equation*}
$$

where it is always assumed that $f((x))=g((x))=0$ whenever there is some $x_{i}<0(1 \leq i \leq s), s$ being any positive integer.

Apparently, the reciprocal pair $(9) \Leftrightarrow(10)$ is just a discrete analog of the inverse relations $(3) \Leftrightarrow(4)$. This is what we claimed in the beginning of this section.

2. A GENERALIZATION OF (9) \Leftrightarrow (10)

Difference operators of higher orders may be defined inductively as follows:

$$
\Delta_{x}^{r}=\Delta_{x} \Delta_{x}^{r-1}, \Delta_{x}^{-r}=\Delta_{x}^{-1} \Delta_{x}^{-(r-1)},(r \geq 2), \Delta^{0}=I
$$

Lemma 1: For any positive integer r, we have ${\underset{x}{r}}_{r} \Delta_{x}^{-r}=\Delta_{x}^{-r}{\underset{x}{x}}=I$.
Proof: (By induction.) The case $r=1$ has been noted previously. If it holds for the case $r=k \geq 1$, then, for any given $f(x)$,

$$
\Delta_{x}^{k+1} \Delta_{x}^{-k-1} f(x)=\Delta_{x}^{k} \Delta_{x} \Delta_{x}^{-1} \Delta_{x}^{-k} f(x)=\Delta_{x}^{k} I \Delta_{x}^{-k} f(x)=\Delta_{x}^{k} \Delta_{x}^{-k} f(x)=f(x)
$$

and, consequently, $\Delta_{x}^{k+1} \Delta_{x}^{-(k+1)}=I$. Hence, $\Delta_{x}^{r} \Delta_{x}^{-r}=I$ holds for all $r \geq 1$. Similarly, $\Delta_{x}^{-r} \Delta_{x}^{r}=I$ may also be verified by induction.

In what follows, we always assume that every function $f((x))$ or $g((x))$ will vanish whenever there is some $x_{i}<0(1 \leq i \leq s)$.

Lemma 2: For every given $(r) \equiv\left(r_{1}, \ldots, r_{2}\right)$ with $r_{i} \geq 1$, we have the following pair of reciprocal relations:

$$
\begin{equation*}
f((x))=\left(\prod_{i=1}^{s} \Delta_{x_{i}}^{-r_{i}}\right) g((x)) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
g((x))=\left(\prod_{i=1}^{s} \Delta_{x_{i}}^{r_{i}}\right) f((x)) \tag{12}
\end{equation*}
$$

Proof: This is easily verified by repeated application of Lemma 1. In fact, the implication $(11) \Rightarrow$ (12) follows from the identity

$$
\begin{equation*}
\left(\prod_{i=1}^{s} \Delta_{x_{i}}^{r_{i}}\right)\left(\prod_{i=1}^{s} \Delta_{x_{i}}^{-r_{i}}\right)=I . \tag{13}
\end{equation*}
$$

Similarly, we have (12) \Rightarrow (11).
Evidently, the reciprocal pair $(11) \Leftrightarrow(12)$ implies $(1) \Leftrightarrow(2)$ with $r_{i}=1(i=1, \ldots, s)$, since (1) and (2) are equivalent to (9) and (10), respectively.

3. AN EXPLICIT FORM

It is not difficult to find some explicit expressions for the right-hand sides of (11) and (12). For the case $s=1$, write $f((x))=f(x)$. By mathematical induction, we easily obtain, for $r \geq 2$,

$$
\begin{align*}
& \Delta_{x}^{r} f(x)=\sum_{0 \leq t \leq r}(-1)^{t}\binom{r}{t} f(x-t), \tag{14}\\
& \Delta_{x}^{-r} g(x)=\sum_{0 \leq \leq \leq t_{1} \leq \cdots \leq t_{r-1} \leq x} g(t) \tag{15}\\
& \Delta_{x}^{-r} g(x)=\sum_{0 \leq t \leq x}\binom{x-t+r-1}{r-1} g(t)=\sum_{0 \leq \leq \leq x}\binom{t+r-1}{r-1} g(x-t), \tag{16}
\end{align*}
$$

where the summation contained in (15) is taken over all the r-tuples of integers $\left(t, t_{1}, \ldots, t_{r-1}\right)$ such that $0 \leq t \leq t_{1} \leq \cdots \leq t_{r-1} \leq x$. It is readily seen that, for each fixed $t \geq 0$, the number of all such r-tuples is given by $\binom{x-t+r-1}{r-1}$, so that (16) follows from (15).

As may be verified, the explicit forms given by (14) and (16) can be used to produce another proof of Lemma 1 and of Lemma 2, with the aid of the combinatorial identity

$$
\sum_{j=0}^{r}(-1)^{j}\binom{r}{j}\binom{n-j+r-1}{r-1}= \begin{cases}1 & \text { when } n=0 \\ 0 & \text { when } n \geq 1\end{cases}
$$

Actually, this identity follows at once from comparing the coefficients of z^{n} on both sides of the product of the following expansions:

$$
(1-z)^{r}=\sum_{j \geq 0}(-1)^{j}\binom{r}{j} z^{j}, \quad(1-z)^{-r}=\sum_{j \geq 0}\binom{j+r-1}{r-1} z^{j} .
$$

In what follows, we denote $(x)-(t) \equiv\left(x_{1}-t_{1}, \ldots, x_{s}-t_{s}\right)$ with $(x) \equiv\left(x_{1}, \ldots, x_{s}\right)$ and $(t) \equiv$ $\left(t_{1}, \ldots, t_{s}\right)$ as before. Also, we use $(0) \leq(t) \leq(x)$ to denote the conditions $0 \leq t_{i} \leq x_{i}(i=1, \ldots, s)$, etc. As the right-hand sides of (11) and (12) consist of only repeated sums, we see that Lemma 2 together with (14) and (16) for $r=r_{i}, x=x_{i}(i=1, \ldots, s)$ imply the following

Theorem: For any given $(r) \equiv\left(r_{1}, \ldots, r_{s}\right)$ with all $r_{i} \geq 1$, there hold the reciprocal relations

$$
\begin{equation*}
f((x))=\sum_{(0) \leq(t) \leq(x)} \mu_{(r)}^{-1}((t)) g((x)-(t)) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
g((x))=\sum_{(0) \leq(t) \leq(r)} \mu_{(r)}((t)) f((x)-(t)), \tag{18}
\end{equation*}
$$

where $\mu_{(r)}((t))$ and $u_{(r)}^{-1}((t))$ are defined by the following:

$$
\begin{equation*}
\mu_{(r)}((t))=\prod_{i=1}^{s}\binom{r_{i}}{t_{i}}(-1)^{t_{i}}, \quad \mu_{(r)}^{-1}((t))=\prod_{i=1}^{s}\binom{t_{i}+r_{i}-1}{r_{i}-1} . \tag{19}
\end{equation*}
$$

Note that for the case $(r) \equiv(1, \ldots, 1)$ the function $\mu_{(r)}((t))$ becomes the ordinary Möbius function, so that (17) and (18) constitute a generalized pair of Möbius inversions. Accordingly, $\mu_{(r)}^{-1}((t))$ may be called the inverse Möbius function with given $(r) \equiv\left(r_{1}, \ldots, r_{s}\right)$ as a parametric vector. Moreover, it may be observed that the condition $(0) \leq(t) \leq(r)$ under the summation of (18) may also be replaced by $(0) \leq(t) \leq(x)$ inasmuch as $g((x)-(t))=0$ whenever there is some $x_{i}-t_{i}<0$. Consequently, (17) and (18) may be expressed as "convolutions":

$$
\begin{equation*}
f((x))=\mu_{(r)}^{-1} * g((x)), \quad g((x))=\mu_{(r)} * f((x)) \tag{20}
\end{equation*}
$$

Remark: Reversing the ordering relations in the summation process, one may find that there are dual forms corresponding to (17) and (18). Suppose that $(m) \equiv\left(m_{1}, \ldots, m_{s}\right)$ is a fixed s-tuple of positive integers and that we are considering such functions $f^{*}((x))$ and $g^{*}((x))$ with the property that $f^{*}((x))=g^{*}((x))=0$ whenever there is some $x_{i}>m_{i}(1 \leq i \leq s)$. Then the dual forms of (17)-(18) are given by

$$
\begin{equation*}
f^{*}((x))=\sum_{(x) \leq(t) \leq(m)} \mu_{(r)}^{-1}((t)-(x)) g^{*}((t)) \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{*}((x))=\sum_{(x) \leq(t) \leq(m)} \mu_{(r)}((t)-(x)) f^{*}((t)), \tag{22}
\end{equation*}
$$

where the summations are taken over all (t) such that $x_{i} \leq t_{i} \leq m_{i}(i=1, \ldots, s)$. This reciprocal pair $(21) \Leftrightarrow(22)$ has certain applications to the Probability Theory of Arbitrary Events. For instance, the case $(r) \equiv(1, \ldots, 1)$ may be used to yield a generalization of Poincarés formula for the calculus of probabilities (cf. [1]).

4. A CONSEQUENCE OF THE THEOREM

Returning now to the theory of numbers, let us denote by $\partial(p \mid d)$ the highest power of the prime number p that divides d. Thus, for $d=p_{1}^{t_{1}} \cdots p_{s}^{t_{s}}$, we have $\partial\left(p_{i} \mid d\right)=t_{i}$. Also, we define $\partial(1 \mid d)=0$.

Notice that the functions $f(n)=f\left(p_{1}^{x_{1}} \cdots p_{s}^{x_{s}}\right)$ and $g(d)=g\left(p_{1}^{t_{1}} \cdots p_{s}^{t_{s}}\right)$ may be mapped to the corresponding functions $\widetilde{f}((x))$ and $\widetilde{g}((t))$, respectively. Thus, making use of the theorem with $r_{i}=r(i=1, \ldots, s)$, we easily get a pair of reciprocal relations, as follows,

$$
\begin{equation*}
f(n)=\sum_{d \mid n} g\left(\frac{n}{d}\right) v_{r}(d) \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
g(n)=\sum_{d \mid n} f\left(\frac{n}{d}\right) \mu_{r}(d) \tag{24}
\end{equation*}
$$

where $\nu_{r}(d)$ and $\mu_{r}(d)$ are defined by the following:

$$
\nu_{r}(d)=\prod_{p \mid d}\binom{\partial(p \mid d)+r-1}{r-1}, \quad \mu_{r}(d)=\prod_{p \mid d}\binom{r}{\partial(p \mid d)}(-1)^{\partial(p \mid d)}
$$

Obviously, the classical pair (1)-(2) is a particular case of (23)-(24) with $r=1$. Moreover, for the case $r=2$, we have

$$
v_{2}(d)=\prod_{p \mid d}(\partial(p \mid d)+1) \stackrel{\operatorname{def}}{=} \delta(d)
$$

where $\delta(d)$ stands for the divisor function that represents the number of divisors of d. Consequently, (23)-(24) imply the following reciprocal pair as the second interesting case:

$$
\begin{align*}
& f(n)=\sum_{d \mid n} g\left(\frac{n}{d}\right) \delta(d) \tag{25}\\
& g(n)=\sum_{d \mid n} f\left(\frac{n}{d}\right) \mu_{2}(d) \tag{26}
\end{align*}
$$

Surely (25)-(26) may be used to obtain various relations between special number sequences by taking $g(n)$ or $f(n)$ to be special number-theoretic functions.

RERERENCES

1. K. L. Chung \& L. C. Hsu. "A Combinatorial Formula and Its Application to the Theory of Probability of Arbitrary Events." Ann. Math. Stat. 16.1 (1945):91-95.
2. L. Comtet. Advanced Combinatorics. (Supplement to Chapter 3.) Dordrecht: D. Reidel, 1974.
3. G. H. Hardy \& E. M. Wright. An Introduction to the Theory of Numbers. Oxford: Clarendon Press, 1979.
4. A. F. Möbius. "Uber eine besondere Art von Umkehrung der Reihen." J. Reine Angew. Math. 9 (1832):105-23.
AMS Classification Numbers: 11A25, 39A70, 47B39

[^0]: * Supported by the International Scientific Exchange Award (NSERC) Canada, in 1993.

