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1. INTRODUCTION

In this paper we consider some aspects of sequences generated by the m™ order homoge-
neous linear recurrence relation

R,=Y aR,, form>2, (1.1)
i=1

where a,, # 0 and the underlying field is the complex numbers. To generate a sequence {R, }r,
we specify initial values R, R,,...,R,_;. Indeed, this sequence can be extended to negative sub-
scripts by using (1.1), and with this convention we simply write {R,} .

For the case m = 2, we adopt the notation of Hordam [3] and write

W, =W,(a,b; p,q), 1.2)
meaning that
W,=pW,_,—qW,_,, Wy=a, W =b. (1.3)

If (R,,...,R,5, R,.))=(0,...,0,1), we write {R,} = {U,}. The sequence {U,} is called the funda-
mental sequence generated by (1.1). It is "fundamental” in the sense that, if {R,} is any sequence
generated by (1.1), then there exist complex numbers by, ..., 5,_; depending upon 4, ...,q,, and
Ry, ..., R,_, such that

m=1

R,=Y bU,, forallintegers n. (1.4)
i=0

In this regard, see Jarden [4], p. 114 or Dickson [1], p. 409, where this result is attributed to
D'Ocagne. In §2 we generalize this idea.
For the Fibonacci and Lucas numbers, it can be proved that

L+ L = S(F+FLy). (1.5)

More generally, for the second-order fundamental and primordial sequences of Lucas [5] defined
by

{Un =W,(0,1, p,q), (L6)
Vo =W, (2, ; P, 9);
where A = p? —4q # 0, we have

—qV2 Vi = A(=qU; +UL). (1.7)

In §3 we demonstrate the existence of a result analogous to (1.7) for any two sequences
generated by (1.1).
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2. A GENERALIZATION OF D'OCAGNE'S RESULT

Let {R,} and {S,} be any two sequences generated by (1.1). Define the (m+1)x(m+1)
determinant D,, for all integers n, by

R, Sn Sn+1 o Spma

Rm—l Sm—l Sm t S2m—2
D,= Bm-z ‘_Sm—-2 ‘Sm—l T ‘S2m—3
R &% & o S

Theorem 1: D, =0 for all integers n.

Proof: Dy=D,=---=D,_, =0 since, in each case, we have an (m+1) x (m+1) determinant
with two identical rows. Now expanding D, along the top row, we see that D, is a linear combi-
nationof R, S,, ..., S,,,..;. Therefore, since each of the sequences {R,},{S,}, ..., {S,.m1} 1S geN-
erated by (1.1) then so is {D,}. But {D,} has m successive terms that are zero and so all its terms
are zero. This completes the proof. [

We now come to the main result of this section.
Corollary 1: There exist constants ¢ and ¢,;, 0< j <m—1, such that

m—1
¢R,= Y ¢,S,,, forallintegers n. 2.1
Jj=0

Proof: Expand D, along the top row. 0

Equation (2.1) generalizes D'Ocagne's result (1.4), where the b, are normally specified with-
out the use of determinants. If {S,} ={U,}, then c, which is the minor of R, is unity and we
obtain an equivalent form of D'Ocagne's result.

3. A RESULT CONCERNING SUMS OF SQUARES

From (2.1) we have, for any integer i,

m-1
CRn+i = Zcoan+i+j' (31)
J=0
Using (1.1), the right side of (3.1) can be written in terms of S, S,.,, ..., S,,,.-1. That is, for any
integer i there exist constants ¢;, 0< j <m—1, such that
m-1
cj{nﬂ' = Zcian+j' (32)
=0
Write £ =(3). Then, for parameters dj, d,, ..., d, we have, from (3.2),
¢ m=1 ¢ ¢
czzdiRr%ﬂ' = ZS3+jZ‘1iCI:]2 +2 Z Sn+an+kZ dicCy, . (3.3)
i=0 7=0 i=0 0<j<k<m-1 i=0
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Consider the system of equations
¢
zéd,-c,-jc,-k:(), 0<j<k<m-1, (3.4)
=

in the unknowns d, d,, ..., d,. Since (3.4) is a system of / homogeneous linear equations in £+1
unknowns, there are an infinite number of solutions (dy, d, ..., d;). Choose any nontrivial solution
and put

e = cd,, 0<i</t,

¢
]}deicg, 0<j<m-1
i=0

Making these substitutions in (3.3), we have succeeded in proving the following theorem.

Theorem 2: Let {R,} and {S,} be any two sequences generated by the recurrence (1.1). Then
there exist constants ¢, 0<i</=(3), and f;, 0<i<m—1, not all zero such that, for all integers

n,
4 m—=1
:E:fﬁlgiw = :E:]ch+i- (3.5)
i=0 i=0

Theorem 2 shows the existence of a result analogous to (1.7) for any two sequences gen-
erated by (1.1).

Example 1: Let {W,} and {S,} be any two sequences generated by the recurrence (1.3). Then,
after some tedious algebra, we obtain the following determinantal identity:

S? 8%, W} Wi

W, § S, M S, M qz W S

WS |s m|| (|8 m TS| 2, 3.6)
S, S, m
S, S, I, m

Example 2: For a fixed integer k, consider the sequences {F,,} and {L,,}. They both satisfy the
recurrence (1.3) with p = I, and g = (-1)*. Substitution into (3.6) yields

S(F+ (D Fluny) = Ly + (D L. G

Example 3: In (1.1), taking m =3 and a,= a, = a; =1, we have
R=R_+R _,+R ;. (3.83)
Feinberg [2] referred to sequences generated by (3.8) as Tribonacci sequences.
For (R, R, R,)=(0,0,1) write {R } = {U,}.
For (R,, R, R} = (3,1, 3) write {R,} = (V.}.
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Then {/,} bears the same relation to {U,} as does the Lucas sequence to the Fibonacci sequence
(see [6], p. 300).

Now assuming a relationship between {U,} and {V,} of the form (3.5) and solving for the
coefficients ¢, and f; yields

34V —30V2 +V2, + V2, = -154U2 +176U2,, + T26U7,, . (3.9

n+l n+l

Alternatively, we have

46U% - 50U2,, - 114U2,, +54U2 . = =TV +12V2, - V2, . (3.10)

n+l

4. OPEN QUESTION

Is there a result analogous to (3.5) for higher powers?
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