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1. INTRODUCTION 

In this paper we consider some aspects of sequences generated by the mih order homoge-
neous linear recurrence relation 

m 

3 , = 2 > ^ i form>2, (1.1) 

where am & 0 and the underlying field is the complex numbers. To generate a sequence {i^}^=0, 
we specify initial values RQ9 i^, -••,^w-i- Indeed, this sequence can be extended to negative sub-
scripts by using (1.1), and with this convention we simply write {i^}. 

For the case m = 2, we adopt the notation of Hordam [3] and write 

Wn=Wn{a9lr9p9q)9 (1.2) 

meaning that 
Wn=pWn_x-qWn_l9 W0=a9W1=b. (1.3) 

If fa,..., i^_2, i^_0 = (0,..., 0,1), we write {R„} = {Un}. The sequence {Un} is called the funda-
mental sequence generated by (1.1). It is "fundamental" in the sense that, if {IQ is any sequence 
generated by (1.1), then there exist complex numbers b09...9hm_l depending upon al9...9am and 
i^ , . . . , iVi such that 

m - l 

Rn = y£dbiUrH.i for all integers n. (1.4) 
/=o 

In this regard, see Jarden [4], p. 114 or Dickson [1], p. 409, where this result is attributed to 
D'Ocagne. In §2 we generalize this idea. 

For the Fibonacci and Lucas numbers, it can be proved that 

Ll+L2
n+1 = 5iF„2 + Fn

2
+l). (1.5) 

More generally, for the second-order fundamental and primordial sequences of Lucas [5] defined 
by 

[U„ = W„(p,\;p,q), 
\Vn = Wn(2,p;p,q\ 

where A = p2 - 4q ^ 0, we have 

-qV„2+V„2
+l = A(-qU2+U2

+l). (1.7) 

In §3 we demonstrate the existence, of a result analogous to (1.7) for any two sequences 
generated by (1.1). 
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2. A GENERALIZATION OF D'OCAGNE'S RESULT 

Let {i^} and {Sn} be any two sequences generated by (1.1). Define the (m + l)x(m + l) 
determinant Dn, for all integers n, by 

K 
Ki-i 
K>-2 

s„ 
Sm-\ 
Sm-2 

$n+l ' 

$m 

Sm-1 ' 

°n+m-

'' ^2m-2 

'' $2m-3 

^o ^o ^i '" Sm-\ 

Theorem 1: Dn = 0 for all integers n. 

Proof: D0 = Dl = '" = Dm_x - 0 since, in each case, we have an (m +1) x (m +1) determinant 
with two identical rows. Now expanding Dn along the top row, we see that Dn is a linear combi-
nation of i^, Sn9 ...,Sn+m_v Therefore, since each of the sequences {i^}? {£„},..., {-5'„+w_1} is gen-
erated by (1.1) then so is {D„}. But {Dn} has m successive terms that are zero and so all its terms 
are zero. This completes the proof • 

We now come to the main result of this section. 

Corollary 1: There exist constants c and cOJ, 0<j<m-l, such that 
m-l 

CR* = 1L cojSn+j for all integers n. (2.1) 
J=o 

Proof: Expand Dn along the top row. D 

Equation (2.1) generalizes D'Ocagne's result (1.4), where the bt are normally specified with-
out the use of determinants. If {Sn} = {£/„}, then c, which is the minor of R^ is unity and we 
obtain an equivalent form of D'Ocagne's result. 

3. A RESULT CONCERNING SUMS OF SQUARES 

From (2.1) we have, for any integer /, 
m-l 

+̂7 = I v W (3-1) 

Using (1.1), the right side of (3.1) can be written in terms of Sn, Sn+1, ...,Sn+m_1. That is, for any 
integer i there exist constants ciJy 0 < j < m -1, such that 

m-l 

j=o 

Write £ = (̂ ). Then, for parameters d0, dh...,de we have, from (3.2), 

£ m-l £ £ 

c^^2
+, = iSn

2
+;I>4 + 2 X W«+*Z^C*. (3.3) 

/=0 y=0 /=0 0<j<k<m-l 7=0 

136 [MAY 



A GENERALIZATION OF A RESULT OF D'OCAGNE 

Consider the system of equations 

Y^dftfifc = 0, 0< j <k <m-1, 
;=0 

(3.4) 

in the unknowns d0, dh...,de. Since (3.4) is a system of I homogeneous linear equations in I +1 
unknowns., there are an infinite number of solutions (dQ, dh ...,dt). Choose any nontrivial solution 
and put 

ef = c2dh 0<i<£, 
t 

fj = Hdich 0<j<m-l 

Making these substitutions in (3.3), we have succeeded in proving the following theorem. 

Theorem 2: Let {R„} and {S„} be any two sequences generated by the recurrence (1.1). Then 
there exist constants eh 0 < i < £ - g), and /•, 0 < / < m-1, not all zero such that, for all integers 

m-\ 
5>J&, = £./ssk (3.5) 
;=0 i=Q 

Theorem 2 shows the existence of a result analogous to (1.7) for any two sequences gen-
erated by (1.1). 

Example 1: Let {Wn} and {Sn} be any two sequences generated by the recurrence (1.3). Then, 
after some tedious algebra, we obtain the following determinantal identity: 

si 
W2 Si 
Wx So 

o2 

S2 Wx 

5, W, 
s2 wx 
& w, 

w2 sx 
Wx So 

Sx S2 
-% 

wx w2 
w2 w3 

= 0. (3.6) 

Example 2: For a fixed integer k, consider the sequences {F^} and {Lkn}. They both satisfy the 
recurrence (1.3) with p = Lk and q = (-1)*. Substitution into (3.6) yields 

5(F?„ + (-i)*-'if(„+1)) = Ll + (-lf-lLl(n+X). (3.7) 

Example 3: In (1.1), taking m = 3 and ax = a2 = a3 = 1, we have 

Feinberg [2] referred to sequences generated by (3.8) as Tribonacci sequences. 
For (Ro, Rx, R,) = (0,0,1) write {R„} = {U„). 
For (Ro, Rx, Bj = (3,1,3) write {^} = {F„}. 

(3.8) 
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Then {Vn} bears the same relation to {£/„} as does the Lucas sequence to the Fibonacci sequence 
(see [6], p. 300). 

Now assuming a relationship between {U„} and {Vn} of the form (3.5) and solving for the 
coefficients ei and/ yields 

34V2-30V2
+l+V2

+2 + 9V2
+3 = -l54U2 + n6U2

+1 + 726U2
+2. (3.9) 

Alternatively, we have 

4 6 ^ 2 - 5 0 ^ V l l 4 ^ V 5 ^ (3.10) 

4. OPEN QUESTION 

Is there a result analogous to (3.5) for higher powers? 
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