GEOMETRIC DISTRIBUTIONS AND FORBIDDEN SUBWORDS

Helmut Prodinger*
Department of Algebra and Discrete Mathematics, Technical University of Vienna, Austria

(Submitted July 1993)
In a recent paper [1] Barry and Lo Bello dealt with the moment generating function of the geometric distribution of order k. I want to draw the attention of the Fibonacci Community to several related papers that were apparently missed by the authors and also to provide a straightforward derivation of their result.

Since the moment generating function $M(t)$ is related to the probability generating function $f(z)$ by $M(t)=f\left(e^{t}\right)$, it is sufficient to consider $f(z)$.

We code a success trial by $\mathbf{1}$ and a failure by $\mathbf{0}$, thereby obtaining a word consisting of the letters 0 and 1 . A sequence of n trials is thus represented by a word of length n over the alphabet $\{\mathbf{0}, \mathbf{1}\}$. In a natural way we attach a weight ω to each word x by replacing $\mathbf{1}$ by p and $\mathbf{0}$ by q and then multiplying as usual. For instance, the word 0110 has the weight $p^{2} q^{2}$. We consider languages (sets of words) L and their generating function $\ell(z)$. The latter is defined to be

$$
\begin{equation*}
\ell(z)=\sum_{x \in L} \omega(x) z^{|x|}, \tag{1}
\end{equation*}
$$

where $|x|$ is the length (number of letters) of the word x. This generating function can be obtained simply by formally replacing the letter $\mathbf{1}$ by $p z$ and 0 by $q z$ in the language L and replacing the so-called concatenation of words by the usual product and the (disjoint) union by the usual addition so that, for instance, $L=\{\mathbf{0}, \mathbf{0 1 0}, \mathbf{0 1 1 0}\}$ has the generating function $\ell(z)=q z+$ $p q^{2} z^{3}+p^{2} q^{2} z^{4}$.

Instead of considering $\mathbb{P}\{X=n\}$, it is easier to consider $\mathbb{P}\{X>n\}$; that means the probability that n trials did not produce k consecutive successes, or the probability that a random word of n letters does not contain the (contiguous) subword $\mathbf{1}^{k}$. We consider the language of these words. A compact notion of it is

$$
\begin{equation*}
\left(\mathbf{1}^{<k} \mathbf{0}\right)^{*} 1^{<k}, \tag{2}
\end{equation*}
$$

where $\mathbb{1}^{<k}=\left\{\varepsilon, \mathbf{1}, \mathbf{1 1}, \ldots, \mathbf{1}^{k-1}\right\}$, with ε being the empty word. This expresses the fact that words without the (contiguous) subword $\mathbf{1}^{k}$ can be written as several blocks of less than k ones, separated by zeros. Let us recall that the asterisk L^{*} describes sequences of L. More formally, $L^{*}=$ $\bigcup_{n \geq 0} L^{n}$, and L^{n} means the concatenation of n copies of L, which can be defined recursively by $L L=\{x y \mid x \in L, y \in L\}$ and $L^{n}=L^{n-1} L$ and $L^{0}=\{\varepsilon\}$. Quite nicely, the generating function of L^{*} is obtained by $\frac{1}{1-\ell(z)}$. Now, to the language $\mathbf{1}^{<k} \mathbf{0}$ the generating function

$$
\begin{equation*}
\left(1+p z+(p z)^{2}+\cdots+(p z)^{k-1}\right) \cdot q z=\frac{1-p^{k} z^{k}}{1-p z} q z \tag{3}
\end{equation*}
$$

is associated, and thus we have, furthermore,

[^0]\[

$$
\begin{equation*}
g(z)=\sum_{n \geq 0} \mathbb{P}\{X>n\} z^{n}=\frac{1}{1-q z \frac{1-p^{k} z^{k}}{1-p z}} \cdot \frac{1-p^{k} z^{k}}{1-p z}=\frac{1-p^{k} z^{k}}{1-z+q p^{k} z^{k+1}} \tag{4}
\end{equation*}
$$

\]

From this we also obtain the probability generating function

$$
\begin{align*}
f(z) & :=\sum_{n \geq 0} \mathbb{P}\{X=n\} z^{n}=\sum_{n \geq 0}(\mathbb{P}\{X>n-1\}-\mathbb{P}\{X>n\}) z^{n} \\
& =1+z \sum_{n \geq 1} \mathbb{P}\{X>n-1\} z^{n-1}-\sum_{n \geq 0} \mathbb{P}\{X>n\} z^{n} \\
& =1-(1-z) g(z)=\frac{1-z+q p^{k} z^{k+1}-1+p^{k} z^{k}+z-p^{k} z^{k+1}}{1-z+q p^{k} z^{k+1}} \tag{5}\\
& =\frac{p^{k} z^{k}(1-p z)}{1-z+q p^{k} z^{k+1}} .
\end{align*}
$$

This derivation completely avoided unpleasant recursions. For such very useful combinatorial constructions and their automatic translation into generating functions, we refer to the survey [2] and a few earlier survey papers of Flajolet cited therein.

The probability generating function (5) appeared first in [10].
Guibas and Odlyzko in a series of papers ([3], [4], [5]) dealt with general forbidden subwords, not just $\mathbf{1}^{k}$. These papers were surveyed in [8] and [9]. Rewriting things accordingly, formula (6.44) in [9] gives

$$
\begin{equation*}
f(z)=\frac{(p z)^{k}}{(p z)^{k}+(1-z) C(z)} \tag{6}
\end{equation*}
$$

where the polynomial $C(z)$ (the "correlation polynomial") depends on the forbidden pattern and is

$$
\begin{equation*}
C(z)=1+(p z)+\cdots+(p z)^{k-1}=\frac{1-(p z)^{k}}{1-p z} \tag{7}
\end{equation*}
$$

in this special instance.
Knuth used similar arguments in [7]. He considered strings of $\mathbf{0}, \mathbf{1}, \mathbf{2}$, where $\mathbf{0}$ and $\mathbf{2}$ appear with probability $1 / 4$ and 1 appears with probability $1 / 2$ and the string $1^{k} 2$ is forbidden. Also, he considered the zeros of the "auxiliary equation"

$$
\begin{equation*}
1-z+q p^{k} z^{k+1}=0 \tag{8}
\end{equation*}
$$

For example, there is a "dominant" solution $\rho=\rho_{k}$ which can be approximated by "bootstrapping": Starting from $z=1+q p^{k} z^{k+1}$, a first approximation is $\rho \approx 1$. Inserting this on the righthand side and expanding, we find $\rho \approx 1+q p^{k}$, and after one more step,

$$
\begin{equation*}
\rho \approx 1+q p^{k}+(k+1) q^{2} p^{2 k} \tag{9}
\end{equation*}
$$

etc. Kirschenhofer and Prodinger also used this type of argument in [6].
With this dominant singularity it is also easy to find the asymptotics of $\mathbb{P}\{X=n\}$ for fixed k, as $n \rightarrow \infty$. We have

$$
\begin{equation*}
f(z)=\frac{p^{k} z^{k}(1-p z)}{1-z+q p^{k} z^{k+1}} \sim \frac{A_{k}}{1-z / \rho} \text { as } z \rightarrow \rho \tag{10}
\end{equation*}
$$

This can be explained informally by saying that locally only one term of the partial fraction decomposition of the rational function $f(z)$ is needed to describe its behavior in a vicinity of the dominant singularity ρ.

Here, A_{k} is a constant that can be found by the traditional techniques to compute the partial fraction decomposition of a rational function.

Thus, the coefficient of z^{n} in $f(z)$ (i.e., $\mathbb{P}\{X=n\}$) behaves as $A_{k} \cdot \rho^{-n}$ (the coefficient of z^{n} in $\frac{A_{k}}{1-z / \rho}$). The constant A_{k} behaves as $A_{k} \approx q p^{k}$ for $k \rightarrow \infty$.

Such asymptotic considerations are to be found in many textbooks and survey articles, notably in [9].

REFERENCES

1. M. J. J. Barry \& A. J. Lo Bello. "The Moment Generating Function of the Geometric Distribution of Order k." The Fibonacci Quarterly 31.2 (1993):178-80.
2. P. Flajolet \& J. Vitter. "Analysis of Algorithms and Data Structures." In Handbook of Theoretical Computer Science, Vol. A, pp. 432-524. Amsterdam: North Holland, 1990.
3. L. J. Guibas \& A. M. Odlyzko. "Maximal Prefix-Synchronized Codes." SIAM J. Appl. Math. 35 (1978):401-18.
4. L. J. Guibas \& A. M. Odlyzko. "Long Repetitive Patterns in Random Sequences." Z. Wahrscheinlichkeitstheorie und verwandte Gebiete 53 (1980):241-62.
5. L. J. Guibas \& A. M. Odlyzko. "String Overlaps, Pattern Matching, and Nontransitive Games." J. Comb. Theory A 30 (1981):183-208.
6. P. Kirschenhofer \& H. Prodinger. "A Coin Tossing Algorithm for Counting Large Numbers of Events." Mathematica Slovaca 42 (1992):531-45.
7. D. E. Knuth. "The Average Time for Carry Propagation." Indagationes Mathematica 40 (1978):238-42.
8. A. M. Odlyzko. "Enumeration of Strings." In Combinatorial Algorithms on Words, pp. 20528. Ed. A. Apostolico \& Z. Galil. New York: Springer, 1985.
9. A. M. Odlyzko. "Asymptotic Enumeration Methods." In Handbook of Combinatorics. Amsterdam: North Holland, to appear.
10. A. N. Philippou, C. Georghiou, \& G. N. Philippou. "A Generalized Geometric Distribution and Some of Its Properties." Statistics and Probability Letters 1.4 (1983):171-75.
AMS Classification Number: 05A15
```
%%%
```


[^0]: *This note was written while the author visited the University Paris 6 ; he is thankful for the warm hospitality he encountered there.

