
GEOMETRIC DISTRIBUTIONS AND FORBIDDEN SUBWORDS 

Helmut Prodinger* 
Department of Algebra and Discrete Mathematics, Technical University of Vienna, Austria 

(Submitted July 1993) 

In a recent paper [1] Barry and Lo Bello dealt with the moment generating function of the 
geometric distribution of order k. I want to draw the attention of the Fibonacci Community to 
several related papers that were apparently missed by the authors and also to provide a straight-
forward derivation of their result. 

Since the moment generating function M(t) is related to the probability generating function 
f(z) by M{i) = f(ef), it is sufficient to consider f(z). 

We code a success trial by 1 and a failure by 0, thereby obtaining a word consisting of the 
letters 0 and 1. A sequence of n trials is thus represented by a word of length n over the alpha-
bet {0, 1}. In a natural way we attach a weight w to each word x by replacing 1 by p and 0 by q 
and then multiplying as usual. For instance, the word 0110 has the weight p2q2. We consider 
languages (sets of words) L and their generating function £(z). The latter is defined to be 

^r)=2>(x)z'*>, (1) 
xeL 

where |x| is the length (number of letters) of the word x. This generating function can be 
obtained simply by formally replacing the letter 1 by pz and 0 by qz in the language L and replac-
ing the so-called concatenation of words by the usual product and the (disjoint) union by the 
usual addition so that, for instance, L = {0, 010, 0110} has the generating function £(z) = qz + 
pq2z3 +p2q2z4. 

Instead of considering P{X = n}y it is easier to consider P{X > n}; that means the probability 
that n trials did not produce k consecutive successes, or the probability that a random word of n 
letters does not contain the (contiguous) subword lk. We consider the language of these words. 
A compact notion of it is 

(1^0)*!^, (2) 

where l<k = {8,1,11,..., lk~1}, with s being the empty word. This expresses the fact that words 
without the (contiguous) subword tk can be written as several blocks of less than k ones, sepa-
rated by zeros. Let us recall that the asterisk L* describes sequences of L. More formally, I* = 
{J„>0Ln, and IT means the concatenation ofn copies of Z, which can be defined recursively by 
LL = {xy \x sL,yeL} and ZT = IT"1!/ and I? = {s}. Quite nicely, the generating function of L* is 
obtained by p ^ . Now, to the language 1<^ 0 the generating function 

i k k 
(l + pz + (pz)2 + .:+(pz)k-l).qz = ^-?-qz (3) 

1 — pz 
is associated, and thus we have, furthermore, 

*This note was written while the author visited the University Paris 6; he is thankful for the warm hospitality he 
encountered there. 
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gtz) = XP{X>n}?=m ' -l-^= t \~?* . (4) ? V = l-pkzk 

„>0 i _ g z i = £ ^ 1-pz 1-z + q p V 

From this we also obtain the probability generating function 

f(z):=^P{X = n}z" = ^(P{X>n-l}-P>{X>n})z" 
n>0 «>0 

= \ + zYy{X>n-\}z"-l-Yy{X>n}zn 

n>0 

_ 1 - z + flpV+1 - 1 + p k z k +z- p k z k + l ( 5 ) 
l — z + qp z 

n>\ n>0 

= l-(l-z)g(z) 

= pkzk(\-pz) 
l-z + qpkzk+l' 

This derivation completely avoided unpleasant recursions. For such very useful combinatorial 
constructions and their automatic translation into generating functions, we refer to the survey [2] 
and a few earlier survey papers of Flajolet cited therein. 

The probability generating function (5) appeared first in [10]. 
Guibas and Odlyzko in a series of papers ([3], [4], [5]) dealt with general forbidden sub-

words, not just lk. These papers were surveyed in [8] and [9]. Rewriting things accordingly, 
formula (6.44) in [9] gives 

/ ( z ) = — ( p * t — t (6) 
{pz)k+{\-z)C{zY 

where the polynomial C(z) (the "correlation polynomial") depends on the forbidden pattern and is 
C(z) = l + (pz) + .-- + (pz)*-1 = i ^ 5 ) i (7) 

l-pz 
in this special instance. 

Knuth used similar arguments in [7]. He considered strings of 0, 1, 2, where 0 and 2 appear 
with probability 1/4 and 1 appears with probability 1/2 and the string 1*2 is forbidden. Also, he 
considered the zeros of the "auxiliary equation" 

l-z + qpkzk+l = 0. (8) 

For example, there is a "dominant" solution p- pk which can be approximated by "bootstrap-
ping": Starting from z = l + qpkzk+1, a first approximation is p « 1. Inserting this on the right-
hand side and expanding, we find p « l + qpk, and after one more step, 

P « i + ^ + ( i + i ) ? y 3 (9) 

etc. Kirschenhofer and Prodinger also used this type of argument in [6]. 
With this dominant singularity it is also easy to find the asymptotics of P{X = n} for fixed k, 

as «—»oo. We have 

/(^^^r-A ->A do) l - z + ^ Y + I l-z/p 
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This can be explained informally by saying that locally only one term of the partial fraction 
decomposition of the rational function f(z) is needed to describe its behavior in a vicinity of the 
dominant singularity p. 

Here, Ak is a constant that can be found by the traditional techniques to compute the partial 
fraction decomposition of a rational function. 

Thus, the coefficient of zn in / (z) (i.e., P{X = n}) behaves as Ak -p~n (the coefficient of zn 

in jz^). The constant Ak behaves as Ak « qpk for k -^ oo. 
Such asymptotic considerations are to be found in many textbooks and survey articles, 

notably in [9]. 
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