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1. INTRODUCTION 

Synthetic division schemes to calculate the linear remainder when a polynomial is divided by 
a quadratic are used in numerical algorithms, such as Bairstow's method, for finding quadratic 
factors of polynomials. In this paper formulas for the linear remainder are derived in terms of the 
coefficients of the polynomial and coefficients of the quadratic divisor. These take a particularly 
compact form when expressed in terms of generalized Fibonacci and Lucas polynomials. Three 
different forms of the remainder are considered and second-order linear partial differential equa-
tions are introduced which have the linear remainder coefficients as solutions. Ordinary differen-
tial equations satisfied by two families of Fibonacci and Lucas polynomials are derived using 
identities which relate them to the generalized polynomials, and nonpolynomial solutions are 
deduced from corresponding solutions of the partial differential equations. 

For any polynomial it is proved there exists a two-variable potential function with the 
property that its critical points correspond to coefficients in the quadratic factors of the polyno-
mial. The potential function is defined by the linear remainder coefficients and an explicit formula 
is obtained in terms of the coefficients of the polynomial and generalized Lucas polynomials. 

Hoggatt and Long [6] and Frei [2] have shown the generalized Fibonacci polynomials 
Fn(x, y) and generalized Lucas polynomials Ln(x, y) satisfy the Binet formulas 

F*(x,y) = 2^£- and Ln{x,y) = an +(3n 

a- p 

for n > 0 where a and (3 are the zeros of t2 - xt - y so that 

a- j4(x + ̂ x2 +4y\ J3 = ^(x-^x2 +4y) 
and 

a + fi = x, afi = -y9 a-fi = ^Jx2+4y. 

These formulas are used to obtain many of the results in the following sections. 

2. REMAINDER FORMULAS 

The remainder coefficients F(x, y) and G(x, y) are defined by 

P(t) = (t2 -xt-y) Q(t) + F(x9 y)(t - x) + G(x, y\ (1) 

where Q(t) is the quotient when a polynomial P(t) is divided by t2 - xt - y. Let 

P(t) = aNtN +aN_xtN~l + • • • +axt + a0, 

2(0 = V " ~ 2 + W ^ 3 + -+V+*2> 

268 [JUNE-JULY 



REMAINDER FORMULAS INVOLVING GENERALIZED FIBONACCI AND LUCAS POLYNOMIALS 

and equate coefficients of powers off in (1), giving the recurrence relation 
bN = aN, bN-i = aN_l + xbN, 

(7i = tf-2,#-3,...,l,0), 

where F(x, j/) = bx and G(x, j ) = b0. These form the basis for the synthetic division calculation of 
the remainder coefficients, described by Mathews [7], for numerical values of x mdy. 

Although these recurrence relations can be used to generate expressions for bx and b0, it is 
simpler to obtain explicit formulas for the remainder coefficients by substituting t-a and t = p in 
(1) giving 

P(a) = - /F(x, y) + G(x, y\ P(fl) = -aF(x, y) + G(x, j ) , (2) 

respectively. It follows that 

17/ , P(a)-P(fi) r , , aP{a)-f3P{p) F(x,y)= x J w , G(*,>0 = — w * > 

and, using the Binet formulas, these can be further simplified to 
N N 

F(x> y) = HanFnix> y\ G(x> y) = H<Vwi(x> y) -
n=Q «=0 

If the linear remainder in (1) is taken instead as F(x, y)t + H(x, y), which is the form used by 
Froberg [3], then H(x, y) = G(x, y) - xF(x9 y) and it can be shown that 

Similarly, by taking the remainder as F(x, y)(t -/2x) + L(x, y), we have L(x, y) = G(x, y) -
/2xF(x,y) and L(x,y) = y2[P{a) + P(fly] = /2ZN

n=o«A(*>y). 

3. DIFFERENTIAL EQUATIONS 

Consider the linear partial differential equations 

&l d2t d2l = dl 
dx2 X dxdy y dy2~ dy 2 x^^r~y^2=~ W 

d2f d2f d2f .df ,„. 
dx1 dxdy dy dy 

d2h d2h cPh_ = _^dh_ (S) 
dx2 X dxdy y dy2~ y dx' K j 

The change of variables from x, y, to a, fl in the region x2+4y> 0, where (3)-(5) are classified 
as hyperbolic, transforms them into their canonical form. 

It can be shown, using the chain rule, that the canonical form of (3) is 

d2l 
dadp 
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from which the general solution is £ = £l{a) + £2(ft). Substituting £l(a) = an and £2{P)~Pn 

gives £ = Ln(x,y) as a solution of (3), and the principle of superposition means the remainder 
coefficient L(x, y) - Z ^ 0

 a>A(x> y) ls ^so a solution. Substituting £x{a) = an and £2(J3) = -ft" 
gives £ = yx2+4yFn(x,y); hence, ^x2-\-4yJ^ssQcnFn(x9y) is another solution of (3) for arbi-
trary constants cn. 

Similarly, the canonical form of (4) can be derived as 

dadp Ka-fi)f] = 0, 

from which it can be deduced that the remainder coefficients 
N N 

*«Fn(x,y), G(x>y) = 
«=0 /7=0 

F(*> y) = lla*Fn(x> y)> G<X y) = X"«^H-I(*> y\ and also X cnLn(x, y) I ^x2+4y 
N 

«=0 

are solutions of (4). 
The canonical form of (5) is 

d1 

dadp 
= 0, 

which can be shown to have as solutions the remainder coefficient 

H(x, y) = a0+ ,y]T anFn_x{x, y) and 
N 

1 
«=1 

cox+yTc
nLr,-i(x,y) t^x2+4y. 

The above solutions also apply in the region x2+4y<0, where (3)-(5) are classified as 
elliptic, although it would be appropriate to replace ^x2 +4y by T]-X2 -4y in the nonpolynomial 
solutions. 

It is not the purpose of this paper to investigate all solutions of (3)-(5), but it is not difficult 
to see that definition of Fn(x, y) and Ln(x, y) for n < 0 (see [2]) and allowing infinite sums, subject 
to any convergence conditions being satisfied, would produce further solutions. 

The single variable polynomials F„(l, z) and Ln(l, z), n>0, with the properties 

Fn(x,y) = x"-lFn(\,z), (6) 

L„(x,y) = x"L„(l,z), (7) 

where z = y I x2, are referred to as the Fibonacci and Lucas polynomials, respectively, by Doman 
and Williams [1]. Galvez and Devesa [4] have shown that they satisfy the ordinary differential 
equations 

dlF. ,dF„ z(\ + 4z)—f - [(« -1) + 2(2/i - S)z]=^ + (n -1)(« - 2)F„ = 0, 
dz dz 

z(l + 4z)^^-[(n-l) + 2(2n-3)z]^ + n(n-l)L=0, 
dz dz 

which may also be proved by substituting (6) and (7) into (4) and (3), respectively. 

(8) 

(9) 
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Using the earlier results, it can be shown that a second linearly independent solution of (8) is 
Ln(l, z)I^/|l + 4z|, and a second linearly independent solution of (9) is ^/|l + 4z|i^(l, z). 

The polynomials Fn(u, 1) and Ln(u, 1), also referred to as Fibonacci and Lucas polynomials by 
Hoggatt and Bicknell [5], are related to the generalized polynomials by 

F„(x,y) = /"-^Fn(u,\), Ln(x,y) = y"/2Ln(u,d, 
where u~xl\Jy. Substitution into (4) and (3) shows they satisfy 

du2 du 
(4 + u 2 ) _ ^ + 3u_JL_(n2_l)Fn=0y 

(4 + u
2)—f + u-f--n2Ln=0, 

du du 

which also have solutions Ln(u, 1)/vw2 +4 and Vw2 +4 Fn(u91), respectively. 

4 A POTENTIAL FUNCTION 

Differentiating (1) with respect to x and rearranging gives 

tQ(t) = (t2-xt-y)^- + f(t-x) + f-F, (10) 

whereas, differentiating (1) with respect to y, multiplying by t and rearranging gives 

tQ(t) = {t2-xt-y)\ tm) XSF 
dy dy 

dG, x dG dF /11X 

Comparing (10) and (11) gives 
dF_^dG_ 
dx dy' 

(12) 

dG „ dG dF / 1 0 v 
— = F + x— + y—. (13) 
dx dy dy 

Equation (12) is the condition for the existence of a 4(x,y)9 defined as the potential function of 
P(t) and also denoted by $P(0L with t r i e properties 

^- = G(x,y) and &- = F(x,y). (14) 
dx dy 

Substituting (14) into (13) proves that <f> satisfies (3); hence, it may be expressed in the form 
lx{a) + £2(fi). It is easily shown, using the chain rule (14) and (2), that 

£ = P(a) and jt = W, 
and therefore, 

N „ N 

r fjlw + r fjw + 1 «=0 " ^ x «=0 

where ^[0] is defined to be zero. 
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If F(x*, y*) = G(x*, y*) = 0, then from (1) and (14) it follows that the polynomial P(t) has a 
quadratic factor t2 -x*t-y* if and only if (x*,y*) is a critical point of its potential function 
<f>[P(t)]. Obviously any linear combination of generalized Lucas polynomials, excluding the con-
stant LQ(X, y), may be considered as the potential function of some polynomial In the case when 
this polynomial has N distinct real roots, its potential function has N(N -1) / 2 critical points all 
deducible from pairwise multiplication of the linear factors of the polynomial Then calculation of 
the roots, say by the Newton-Raphson method, would generally be a computationally efficient 
way of finding the larger number .of critical points of the linear combination of generalized Lucas 
polynomials when N > 4. 
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