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1. INTRODUCTION 

In this paper vp(r) denotes the exponent of the highest power of a prime p which divides r 
and is referred to as the/?-adic order of r. We characterize the/?-adic orders vp(F„) and vp(Ln), 
i.e., the exponents of a prime/? in the prime power decomposition of Fn and Ln, respectively. 

The characterization of the divisibility properties of combinatorial quantities has always been 
a popular area of research. In particular, finding the highest powers of primes which divide these 
numbers (e.g., factorials, binomial coefficients [14], Stirling numbers [2], [1], [10], [9]) has at-
tracted considerable attention. The analysis of the periodicity modulo any integer (e.g., [3], [11], 
[14], [8]) of these numbers helps exploring their divisibility properties (e.g., [9]). The periodic 
property of the Fibonacci and Lucas numbers has been extensively studied (e.g., [16], [13], [17], 
[12]). Here we use some of these properties and methods to find vp(Fn) and vp(Ln). An applica-
tion of the results to the Stirling numbers of the second kind is discussed at the end of the paper. 

We note that Halton [5] obtained similar results on the /?-adic order of the Fibonacci num-
bers, and additional references on earlier developments can be found in Robinson [13] and Vinson 
[15]. The approach presented here is based on a refined analysis of the periodic structure of the 
Fibonacci numbers by exploring its properties, in particular, around the points where Fn = 0 (mod 
/?). [The smallest n such that Fn = 0 (mod /?) is called the rank of apparition of prime p and is 
denoted by n(p).] This technique is based on that of Wilcox [17] and provides a simple and self-
contained analysis of properties related to divisibility. For instance, we obtain another characteri-
zation of the ratio of the period to the rank of apparition [15] in terms of Fn^pyX (mod/?) for any 
prime/?. 

Knuth and Wilf [7] generalized Rummer's result on the highest power of a prime that divides 
the binomial coefficient. Kummer proved that the/?-adic order of a binomial coefficient ^J is the 
number of "carries" that occur when the integers m and n—m are added in/?-ary notation. Knuth 
and Wilf extended the use of counting "carries" to a broad class of generalized binomial coeffi-
cients which includes the Fibonacci numbers (Theorem 2 in [7]). Their method is derived for 
regularly divisible sequences [7]; however, it can be modified to include the Lucas numbers, too. 
We note that L2n- I?n-2(-l)n; therefore, {L2m l^) is either 1 or 2, which illustrates that the 
Lucas numbers are not regularly divisible. 

If m = p"lp%2 -"Pkk is the prime-decomposition of m, then vm{N)- min^^J vp{N)l at\. 
Therefore, without loss of generality, we will focus on the characterization of vp(Fn) and vp(Ln) 
where/? is a prime. 

2. THE 2-AND 5-ADIC ORDERS 

It turns out that the 5-adic order of the Fibonacci and Lucas numbers can be computed easily. 
For the Fibonacci numbers, we use the well-known identity [16] 
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and obtain 

Lemma 1: For all n > 0, we have v5(Fn) = v5(n). On the other hand, Ln is not divisible by 5 for 
any n. 

Proof: Observe that 

except for k = 0 when v>{[ik+\} 5k\ = v5(n). 

Identity (1) implies v5(F„) = v5(ri). 
For the Lucas numbers, the period of the sequence {Ln mod 5} is 4 with the cycle {1,3,4,2}; 

therefore, 5 can never be a divisor of Ln. D 
To derive the 2-adic orders of Fn and Ln, we use congruences proved by Jacobson [6]. 

Lemma A (Lemma 2 in [6]): Let * > 5 and s > 1. Then ^*-33j = s2k~l (mod 2*). 

Lemma B (Lemma 4 in [6])r Let k > 5 and n > 0 and assume w = 0 (mod 6). Then ^+2Jk-33 = 
Fw + 2^1(mod2/:). 

Lemma C (Lemma 5 in [6]): Let w > 0 and assume n = 3 (mod 6). Then i^ = 2 (mod 32). 

We assume that n > 1 from now on. If n s 1 or 2 (mod 3), then we know that Fn = l (mod 
2); thus, v2(FM) = 0 for n = 1,2 (mod 3). Lemma A yields v2(F12w) = v2(w) + 4. By Lemma C, we 
get v2(Fn) - 1 if n = 3 (mod 6), and Lemma B [in the more convenient form Fn = Fn+n + 16 (mod 
32)] implies that F6 = 8 = F18 +16 = F30 = F42 +16 = • • • (mod 32), and in general, Fl2n+6 = -8 or 8 
(mod 32); therefore, v2(F12w+6) = 3. 

Similarly, Ln = 1 (mod 2) for n # 0 (mod 3). By the duplication formula, F2n - FnLn, it fol-
lows that v2(L„) = v2(F2n) - v2(Fn). Therefore, v2(L6w+3) = 2 and v2(L6n) = 1, for it turns out that 

In summary, 

Lemma 2: 

v2(F„) = 
0, if n = 1,2 mod 3, 
1, if«= 3 mod 6, 
3, ifrc = 6 mod 12, 
v2(w) + 2, ifn = 0 mod 12, 

and 
f0, if« = l,2 mod 3, 

v2(Zw) = <2, if w = 3 mod 6, 
[1, if?i = 0 mod 6. 
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3. p-ADIC ORDERS 

In this section we assume that/? is a prime different from 2 and 5. It is well known that either 
Fp_x orFp+l is divisible hyp for every prime/?. 

Let n = n(m) be the first positive index for which Fn = 0 (mod m). This index is often called 
the rank of apparition (appearance) or Fibonacci entry-point ofm. The order ofp in Fn^ will 
be denoted by e = e(p), i.e., e = e(p) = vp(Fn(p)) > , Fn{p^ = 0 (mod/?*) and Fn{p) ± 0 (mod/?e+1). 
In this paper k(m) denotes the period modulo m of the Fibonacci series. 

We shall need 

Theorem A (Theorem 3 in [16]): The terms for which Fn = 0 (mod m) have subscripts that form 
a simple arithmetic progression. That is, n = x • d for x = 0,1,2,..., and some positive integer d = 
t/(/w), gives all w with i^ = 0 (mod m). 

Note that d(m) is exactly w(/ra), and d(pl) = <i(/?) = /*(/?) for all 1 < / < e(p). It also follows 
that Fm^0 (mod/?) unless m is a multiple of n(p). Clearly, (/?, /?(/?)) = 1. From now on we will 
focus on indices of the form cn(p)pa where c > 1 and a > 0 integers, and (c, /?) = 1. 

We prove 

Theorem: For /? ̂  2 and 5, 

fv^w) + e(/?) if ft = 0 (mod «(/?)), 
0, i f « ^ 0 (mod«(/?)), 

and 

l ) / M _ k(w) + e(p\ if £(/?)*4n(p) mdn^^f (mod«(/?)), 
[0, otherwise. 

Proof: The basic idea of the proof is based on the identity [16] 

Fan = 2'-"Fn(KFZ+aL"„-1), (4) 

where Z is an integer. We set a = /?, a > 1, and « = cn(p)pa~l such that (c, /?) = 1. Identity (4) 
and Theorem A imply that 

F , , a=2l~pF , , ajK'p2+pLp-* a \ 
cn{p)pa cn(p)pa l \ r i? Cn(p)pa 1 '* 

with some integer K'; therefore, 

for (/£, Zw) is either 1 or 2, and inductively, 

v^^(^) = vp(F-(P)) + a - (5) 

We now prove vp(Fcn(p)) = vp(Fn{p)). The multiplication identity [4] 

Fkn^kFnF£ {mo&Ft) (6) 
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yields Fcn(p) = cFn(p)F°(p)+1 (modp2e) by setting n = n(p),k = cy mde = e(p). We show that 
(Fn(P)+h P) -1 by deriving the congruences 

.2 zr2 J "1 m o d A i f k(P) = 4n(pX 
^ ) + i - ^ M = | + l m o d A Q t h e r w i s e ? ' W 

which prove that vp(Fcn(p)) = vp(Fn(p)), for (c,/?) = 1, and vp(Fn{p)) = e<2e. Identity (5) implies 
vp(Fc»(P)p" ) = VP(FKP)) + a = e(p) + a and identity (2). 

In order to prove identity (7), we set 

Fn(P)-i^x (mod/?), (8) 

and observe that the Fibonacci series around the term Fn^ = 0 (mod p) must have the form 
• • •, - 8x, 5x, - 3x, 2x, - x, x, 0, x, x, 2x, 3x, 5x, 8x, • • •. This sequence can be continued backward 
until we reach the term Fx = 1, i.e., (-l)"( /7 )^(P)-ix = 1 (mod/?). The forward continuation yields 
F2n(P)-\ = Fn{P)-\x (mod/?). If n(p) is even, then 

^ H x s l (mod/?) (9) 

and, by identity (8), x2 = 1 (mod /?) follows, i.e., i ^ - i = x = +1 (mod /?). On the other hand, 
Fn(p)-\x = 1 (mod/?) implies that if x = 1 (mod/?) then k{p) = n(p), and n(p)/2 is odd (see [17], 
Theorem 1, case (iv)). It follows that k(p) is not a multiple of 4, thus p = ±1 (mod 10) (see [16], 
Corollary, p. 529). On the other hand, if x = - 1 (mod /?) then Fn(p)_x = - 1 , Fln^p)_x = Fn{p)_xx = 1 
(mod/?), therefore k(p) - 2n(p). 

If «(/?) is odd, then F^^x = - 1 (mod /?), and similarly to identity (8) we set F2n(^pyl = y 
(mod/?) and repeat the previous argument by substituting the even 2n(p) forn(p) and y for x. 
Here we have F2n(p)_ly = l and / = 1 (mod/?) with ^ F ^ ^ s ^ x s - l (mod/?). By 
identity (8), we obtain that x2 = - 1 (mod /?). We know from [16] that k(p) must be even and a 
multiple of «(/?), therefore &(/?) = 4?i(/?) must hold. This case occurs, for example, if/? is 13, 17, 
or 61. 

To prove identity (3), we apply the duplication formula Ln ~-jr, from which we can easily 
deduce vp(Ln). We have three cases: either n ^ 0 (mod n(p)) and 2n^0 (mod «(/?)), or n ^ 0 
(mod w(/?)) but 2̂ i = 0 (mod w(p)), or n = 0 (mod ?*(/?)). 

In the first case, vp(F2n) - vp(Fn) = 0 implies that vp(Ln) = 0. Similarly, the third case yields 
vp(F2n) = vp(Fn) = vp(ri) + e(p) and v/?(Z>l) = 0. The second case can never happen if n(p) is odd, 
that is, k(p)-4n(p). Otherwise, n = d-^- must hold with some odd integer d\ therefore, 
v (F2n) = v JFdn( N) = vp(<f) + e(/?) while v (Fn) = 0 for w is not a multiple of «(/?). The /?-adic 
order of Z,w is now v^w) + e(/?). D 

In passing, we note that we fully characterized -^ in terms of x = Fn^py_x (mod /?) and we 
found 
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Lemma 3: 
k(p) = n(p), iff x = 1 mod p, 
k(p) = 2n(p\ iffx = - l modp, 
k(p) = 4n(p\ iff x2 = -1 mod p. 

In the first case, p must have the form 10^ + 1 while the third case requires that p = 41 +1. 
We note that identities (6) and (7) actually imply 

Lemma 4: For every even c and/? such that (c, p) = 1, 

Fc J(-l)^cFn(p)Fn(P)+i (modp2), ifk(p) = 4n(pl 
CKP) \ cFn{p)Fn{P)+i (mod/?2), otherwise. 

For every odd c and/? such that (c,/?) = 1, 

cnp I cFn(P) (m°d/?2), otherwise. 

The theorem yields vp(Fc,)pa) = a + l if e(p) = vp(Fn(py) = 1. We note that a prime p is 
called & primitive prime factor of Fn if p\Fn, but/? does not divide any preceding number in the 
sequence. According to our notation, p is a primitive prime factor of Fn^. We can consider the 
primitive part FJ ofFn for which Fn = F^-F^' such that (FJ, F^) = 1, and/? divides FJ if and only 
if/? is a primitive prime factor of Fn. If we let m = n(p), then F^ is square-free exactly if e(p') = 1 
for every primitive prime factor /?' of Fm, e.g., for p' - /?. [Clearly, m - n{p') for all these prime 
factors:] It appears, however, that saying anything about F^ being square-free is a difficult 
problem ([12], p. 49). The interested reader will find a lively discussion on the primitive prime 
factors of the generalized Lucas sequences in [12]. 

4. AN APPLICATION 

It turns out that the 5-adic analysis of the series Fn andZ„ plays a major role in determining 
v5(k\S(n,k)) where S(n,k) denotes the Stirling numbers of the second kind and n = a-Sq, 
k = 2b-5z, a, b, and q are positive integers such that (a, 5) = (b, 5) = 1, and4|a, while z is a 
nonnegative integer. For instance, if q is sufficiently large and z > 0 , then we can derive the 
identities 

k! S(n, k) = -2- 5 ^ ~ \ 5 Z (mod 5*+1), if b is even, 
and 

k\S(n, k) 5 2 . 5 * ^ ^ (mod5*+1), if* is odd. 

In general, for even k, we obtain 
rf - 1 . if * ss 0,4,8,12,16 (mod 20), 

v5(k\S(n,k)) = 

4 
Jc-2 

4 ' if* s 2,6,14 (mod 20), 
fv5(£), if ^ = 10 (mod 20), 

*=2.+v5(k + 2), if A: = 18 (mod 20). 
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Notice that for n = a-5q, 4|a, (a,5) = l, and q sufficiently large, v5(k\S(n,k)) can depend on n 
only if k is odd. Actually, it does depend on n if and only if k 15 is an odd integer. The proof will 
appear in a forthcoming paper. We note that the above identities are generalizations of the 
identity v2(k!S(n, k)) = k-1, where n = a• 2q, a is odd, and g is sufficiently large (see [9]). 
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