THE ORDER OF THE FIBONACCI AND LUCAS NUMBERS

T. Lengyel

Occidental College, 1600 Campus Road, Los Angeles, CA 90041 (Submitted October 1993)

1. INTRODUCTION

In this paper $v_p(r)$ denotes the exponent of the highest power of a prime p which divides r and is referred to as the p-adic order of r. We characterize the p-adic orders $v_p(F_n)$ and $v_p(L_n)$, i.e., the exponents of a prime p in the prime power decomposition of F_n and L_n , respectively.

The characterization of the divisibility properties of combinatorial quantities has always been a popular area of research. In particular, finding the highest powers of primes which divide these numbers (e.g., factorials, binomial coefficients [14], Stirling numbers [2], [1], [10], [9]) has attracted considerable attention. The analysis of the periodicity *modulo* any integer (e.g., [3], [11], [14], [8]) of these numbers helps exploring their divisibility properties (e.g., [9]). The periodic property of the Fibonacci and Lucas numbers has been extensively studied (e.g., [16], [13], [17], [12]). Here we use some of these properties and methods to find $v_p(F_n)$ and $v_p(L_n)$. An application of the results to the Stirling numbers of the second kind is discussed at the end of the paper.

We note that Halton [5] obtained similar results on the *p*-adic order of the Fibonacci numbers, and additional references on earlier developments can be found in Robinson [13] and Vinson [15]. The approach presented here is based on a refined analysis of the periodic structure of the Fibonacci numbers by exploring its properties, in particular, around the points where $F_n \equiv 0 \pmod{p}$. [The smallest *n* such that $F_n \equiv 0 \pmod{p}$ is called the rank of apparition of prime *p* and is denoted by n(p).] This technique is based on that of Wilcox [17] and provides a simple and selfcontained analysis of properties related to divisibility. For instance, we obtain another characterization of the ratio of the period to the rank of apparition [15] in terms of $F_{n(p)-1} \pmod{p}$ for any prime *p*.

Knuth and Wilf [7] generalized Kummer's result on the highest power of a prime that divides the binomial coefficient. Kummer proved that the *p*-adic order of a binomial coefficient $\binom{n}{m}$ is the number of "carries" that occur when the integers *m* and *n*-*m* are added in *p*-ary notation. Knuth and Wilf extended the use of counting "carries" to a broad class of generalized binomial coefficients which includes the Fibonacci numbers (Theorem 2 in [7]). Their method is derived for *regularly divisible sequences* [7]; however, it can be modified to include the Lucas numbers, too. We note that $L_{2n} = L_n^2 - 2(-1)^n$; therefore, (L_{2n}, L_n) is either 1 or 2, which illustrates that the Lucas numbers are not regularly divisible.

If $m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ is the prime-decomposition of *m*, then $v_m(N) = \min_{1 \le i \le k} \lfloor v_{p_i}(N) / \alpha_i \rfloor$. Therefore, without loss of generality, we will focus on the characterization of $v_p(F_n)$ and $v_p(L_n)$ where *p* is a prime.

2. THE 2- AND 5-ADIC ORDERS

It turns out that the 5-adic order of the Fibonacci and Lucas numbers can be computed easily. For the Fibonacci numbers, we use the well-known identity [16]

234

$$2^{n-1}F_n = \sum_{k=0}^{n} \binom{n}{2k+1} 5^k, \ n \ge 1,$$
(1)

and obtain

Lemma 1: For all $n \ge 0$, we have $v_5(F_n) = v_5(n)$. On the other hand, L_n is not divisible by 5 for any n.

Proof: Observe that

$$v_{5}\left(\binom{n}{2k+1}5^{k}\right) = v_{5}(n) - v_{5}(2k+1) + v_{5}\left(\binom{n-1}{2k}5^{k}\right) \ge v_{5}(n) - v_{5}(2k+1) + k > v_{5}(n),$$

except for k = 0 when

$$v_5\left(\binom{n}{2k+1}5^k\right) = v_5(n)$$

Identity (1) implies $v_5(F_n) = v_5(n)$.

For the Lucas numbers, the period of the sequence $\{L_n \mod 5\}$ is 4 with the cycle $\{1, 3, 4, 2\}$; therefore, 5 can never be a divisor of L_n . \Box

To derive the 2-adic orders of F_n and L_n , we use congruences proved by Jacobson [6].

Lemma A (Lemma 2 in [6]): Let $k \ge 5$ and $s \ge 1$. Then $F_{2^{k-3}3s} \equiv s2^{k-1} \pmod{2^k}$.

Lemma B (Lemma 4 in [6]): Let $k \ge 5$ and $n \ge 0$ and assume $n \equiv 0 \pmod{6}$. Then $F_{n+2^{k-3}3} \equiv F_n + 2^{k-1} \pmod{2^k}$.

Lemma C (Lemma 5 in [6]): Let $n \ge 0$ and assume $n \equiv 3 \pmod{6}$. Then $F_n \equiv 2 \pmod{32}$.

We assume that $n \ge 1$ from now on. If $n \equiv 1$ or 2 (mod 3), then we know that $F_n \equiv 1$ (mod 2); thus, $v_2(F_n) = 0$ for $n \equiv 1, 2 \pmod{3}$. Lemma A yields $v_2(F_{12n}) = v_2(n) + 4$. By Lemma C, we get $v_2(F_n) = 1$ if $n \equiv 3 \pmod{6}$, and Lemma B [in the more convenient form $F_n \equiv F_{n+12} + 16 \pmod{32}$] implies that $F_6 = 8 \equiv F_{18} + 16 \equiv F_{30} \equiv F_{42} + 16 \equiv \cdots \pmod{32}$, and in general, $F_{12n+6} \equiv -8$ or 8 (mod 32); therefore, $v_2(F_{12n+6}) = 3$.

Similarly, $L_n \equiv 1 \pmod{2}$ for $n \neq 0 \pmod{3}$. By the duplication formula, $F_{2n} = F_n L_n$, it follows that $v_2(L_n) = v_2(F_{2n}) - v_2(F_n)$. Therefore, $v_2(L_{6n+3}) = 2$ and $v_2(L_{6n}) = 1$, for it turns out that $v_2(L_{12n}) = v_2(L_{12n+6}) = 1$.

In summary,

Lemma 2:

$$v_2(F_n) = \begin{cases} 0, & \text{if } n \equiv 1, 2 \mod 3, \\ 1, & \text{if } n \equiv 3 \mod 6, \\ 3, & \text{if } n \equiv 6 \mod 12, \\ v_2(n) + 2, & \text{if } n \equiv 0 \mod 12, \end{cases}$$

and

$$v_2(L_n) = \begin{cases} 0, & \text{if } n \equiv 1, 2 \mod 3, \\ 2, & \text{if } n \equiv 3 \mod 6, \\ 1, & \text{if } n \equiv 0 \mod 6. \end{cases}$$

1995]

THE ORDER OF THE FIBONACCI AND LUCAS NUMBERS

3. *p*-ADIC ORDERS

In this section we assume that p is a prime different from 2 and 5. It is well known that either F_{p-1} or F_{p+1} is divisible by p for every prime p.

Let n = n(m) be the first positive index for which $F_n \equiv 0 \pmod{m}$. This index is often called the *rank of apparition (appearance)* or *Fibonacci entry-point* of *m*. The order of *p* in $F_{n(p)}$ will be denoted by e = e(p), i.e., $e = e(p) = v_p(F_{n(p)}) \ge r_{n(p)} \equiv 0 \pmod{p^e}$ and $F_{n(p)} \not\equiv 0 \pmod{p^{e+1}}$. In this paper k(m) denotes the period *modulo m* of the Fibonacci series.

We shall need

Theorem A (Theorem 3 in [16]): The terms for which $F_n \equiv 0 \pmod{m}$ have subscripts that form a simple arithmetic progression. That is, $n = x \cdot d$ for x = 0, 1, 2, ..., and some positive integer d = d(m), gives all n with $F_n \equiv 0 \pmod{m}$.

Note that d(m) is exactly n(m), and $d(p^i) = d(p) = n(p)$ for all $1 \le i \le e(p)$. It also follows that $F_m \ne 0 \pmod{p}$ unless *m* is a multiple of n(p). Clearly, (p, n(p)) = 1. From now on we will focus on indices of the form $cn(p)p^{\alpha}$ where $c \ge 1$ and $\alpha \ge 0$ integers, and (c, p) = 1.

We prove

Theorem: For $p \neq 2$ and 5,

$$v_p(F_n) = \begin{cases} v_p(n) + e(p) & \text{if } n \equiv 0 \pmod{n(p)}, \\ 0, & \text{if } n \not\equiv 0 \pmod{n(p)}, \end{cases}$$
(2)

and

$$v_p(L_n) = \begin{cases} v_p(n) + e(p), & \text{if } k(p) \neq 4n(p) \text{ and } n \equiv \frac{n(p)}{2} \pmod{n(p)}, \\ 0, & \text{otherwise.} \end{cases}$$
(3)

Proof: The basic idea of the proof is based on the identity [16]

$$F_{an} = 2^{1-a} F_n (KF_n^2 + aL_n^{a-1}),$$
(4)

where K is an integer. We set $a = p, \alpha \ge 1$, and $n = cn(p)p^{\alpha-1}$ such that (c, p) = 1. Identity (4) and Theorem A imply that

$$F_{cn(p)p^{\alpha}} = 2^{1-p} F_{cn(p)p^{\alpha-1}} (K'p^2 + pL_{cn(p)p^{\alpha-1}}^{p-1}),$$

with some integer K'; therefore,

$$v_p(F_{cn(p)p^{\alpha}}) = v_p(F_{cn(p)p^{\alpha-1}}) + 1,$$

for (F_n, L_n) is either 1 or 2, and inductively,

$$v_p(F_{cn(p)p^{\alpha}}) = v_p(F_{cn(p)}) + \alpha.$$
(5)

We now prove $v_p(F_{cn(p)}) = v_p(F_{n(p)})$. The multiplication identity [4]

$$F_{kn} \equiv kF_n F_{n+1}^{k-1} \pmod{F_n^2} \tag{6}$$

JUNE-JULY

236

yields $F_{cn(p)} \equiv cF_{n(p)}F_{n(p)+1}^{c-1} \pmod{p^{2e}}$ by setting n = n(p), k = c, and e = e(p). We show that $(F_{n(p)+1}, p) = 1$ by deriving the congruences

$$F_{n(p)+1}^{2} \equiv F_{n(p)-1}^{2} \equiv \begin{cases} -1 \mod p, & \text{if } k(p) = 4n(p), \\ +1 \mod p, & \text{otherwise,} \end{cases}$$
(7)

which prove that $v_p(F_{cn(p)}) = v_p(F_{n(p)})$, for (c, p) = 1, and $v_p(F_{n(p)}) = e < 2e$. Identity (5) implies $v_p(F_{cn(p)p^{\alpha}}) = v_p(F_{n(p)}) + \alpha = e(p) + \alpha$ and identity (2).

In order to prove identity (7), we set

$$F_{n(p)-1} \equiv x \pmod{p},\tag{8}$$

and observe that the Fibonacci series around the term $F_{n(p)} \equiv 0 \pmod{p}$ must have the form $\dots, -8x, 5x, -3x, 2x, -x, x, 0, x, x, 2x, 3x, 5x, 8x, \dots$ This sequence can be continued backward until we reach the term $F_1 = 1$, i.e., $(-1)^{n(p)}F_{n(p)-1}x \equiv 1 \pmod{p}$. The forward continuation yields $F_{2n(p)-1} \equiv F_{n(p)-1}x \pmod{p}$. If n(p) is even, then

$$F_{n(p)-1}x \equiv 1 \pmod{p} \tag{9}$$

and, by identity (8), $x^2 \equiv 1 \pmod{p}$ follows, i.e., $F_{n(p)-1} \equiv x \equiv \pm 1 \pmod{p}$. On the other hand, $F_{n(p)-1}x \equiv 1 \pmod{p}$ implies that if $x \equiv 1 \pmod{p}$ then k(p) = n(p), and n(p)/2 is odd (see [17], Theorem 1, case (iv)). It follows that k(p) is not a multiple of 4, thus $p \equiv \pm 1 \pmod{10}$ (see [16], Corollary, p. 529). On the other hand, if $x \equiv -1 \pmod{p}$ then $F_{n(p)-1} \equiv -1$, $F_{2n(p)-1} \equiv F_{n(p)-1}x \equiv 1 \pmod{p}$, therefore k(p) = 2n(p).

If n(p) is odd, then $F_{n(p)-1}x \equiv -1 \pmod{p}$, and similarly to identity (8) we set $F_{2n(p)-1} \equiv y \pmod{p}$ and repeat the previous argument by substituting the even 2n(p) for n(p) and y for x. Here we have $F_{2n(p)-1}y \equiv 1$ and $y^2 \equiv 1 \pmod{p}$ with $y \equiv F_{2n(p)-1} \equiv F_{n(p)-1}x \equiv -1 \pmod{p}$. By identity (8), we obtain that $x^2 \equiv -1 \pmod{p}$. We know from [16] that k(p) must be even and a multiple of n(p), therefore k(p) = 4n(p) must hold. This case occurs, for example, if p is 13, 17, or 61.

To prove identity (3), we apply the duplication formula $L_n = \frac{F_{2n}}{F_n}$, from which we can easily deduce $v_p(L_n)$. We have three cases: either $n \neq 0 \pmod{n(p)}$ and $2n \neq 0 \pmod{n(p)}$, or $n \neq 0 \pmod{n(p)}$, or $n \neq 0 \pmod{n(p)}$.

In the first case, $v_p(F_{2n}) = v_p(F_n) = 0$ implies that $v_p(L_n) = 0$. Similarly, the third case yields $v_p(F_{2n}) = v_p(F_n) = v_p(n) + e(p)$ and $v_p(L_n) = 0$. The second case can never happen if n(p) is odd, that is, k(p) = 4n(p). Otherwise, $n = d \cdot \frac{n(p)}{2}$ must hold with some odd integer d; therefore, $v_p(F_{2n}) = v_p(F_{dn(p)}) = v_p(d) + e(p)$ while $v_p(F_n) = 0$ for n is not a multiple of n(p). The p-adic order of L_n is now $v_p(n) + e(p)$. \Box

In passing, we note that we fully characterized $\frac{k(p)}{n(p)}$ in terms of $x \equiv F_{n(p)-1} \pmod{p}$ and we found

1995]

Lemma 3:

$$k(p) = n(p), \quad \text{iff } x \equiv 1 \mod p,$$

$$k(p) = 2n(p), \quad \text{iff } x \equiv -1 \mod p,$$

$$k(p) = 4n(p), \quad \text{iff } x^2 \equiv -1 \mod p.$$

In the first case, p must have the form $10\ell \pm 1$ while the third case requires that $p = 4\ell + 1$.

We note that identities (6) and (7) actually imply

Lemma 4: For every even c and p such that (c, p) = 1,

$$F_{cn(p)} \equiv \begin{cases} (-1)^{\frac{c-2}{2}} cF_{n(p)} F_{n(p)+1} \pmod{p^2}, & \text{if } k(p) = 4n(p), \\ cF_{n(p)} F_{n(p)+1} \pmod{p^2}, & \text{otherwise.} \end{cases}$$

For every odd c and p such that (c, p) = 1,

$$F_{cn(p)} \equiv \begin{cases} (-1)^{\frac{c-1}{2}} cF_{n(p)} \pmod{p^2}, & \text{if } k(p) = 4n(p), \\ cF_{n(p)} \pmod{p^2}, & \text{otherwise.} \end{cases}$$

The theorem yields $v_p(F_{cn(p)p^\alpha}) = \alpha + 1$ if $e(p) = v_p(F_{n(p)}) = 1$. We note that a prime p is called a *primitive prime factor* of F_n if $p|F_n$, but p does not divide any preceding number in the sequence. According to our notation, p is a primitive prime factor of $F_{n(p)}$. We can consider the *primitive part* F'_n of F_n for which $F_n = F'_n \cdot F''_n$ such that $(F'_n, F''_n) = 1$, and p divides F'_n if and only if p is a primitive prime factor of F_n . If we let m = n(p), then F'_m is square-free exactly if e(p') = 1 for every primitive prime factor p' of F_m , e.g., for p' = p. [Clearly, m = n(p') for all these prime factors.] It appears, however, that saying anything about F'_n being square-free is a difficult problem ([12], p. 49). The interested reader will find a lively discussion on the primitive prime factors of the generalized Lucas sequences in [12].

4. AN APPLICATION

It turns out that the 5-adic analysis of the series F_n and L_n plays a major role in determining $v_5(k!S(n,k))$ where S(n,k) denotes the Stirling numbers of the second kind and $n = a \cdot 5^q$, $k = 2b \cdot 5^z$, a, b, and q are positive integers such that (a, 5) = (b, 5) = 1, and 4|a, while z is a nonnegative integer. For instance, if q is sufficiently large and z > 0, then we can derive the identities

$$k!S(n,k) \equiv -2 \cdot 5^{\frac{b}{2}5^{z}-1}L_{b\cdot 5^{z}} \pmod{5^{q+1}}$$
, if b is even,

and

$$k!S(n,k) \equiv 2 \cdot 5^{\frac{b\cdot 5^2}{2}} F_{b\cdot 5^2} \pmod{5^{q+1}}$$
, if b is odd.

In general, for even k, we obtain

$$v_{5}(k!S(n,k)) = \begin{cases} \frac{k}{4} - 1, & \text{if } k \equiv 0, 4, 8, 12, 16 \pmod{20}, \\ \frac{k-2}{4}, & \text{if } k \equiv 2, 6, 14 \pmod{20}, \\ \frac{k-2}{4} + v_{5}(k), & \text{if } k \equiv 10 \pmod{20}, \\ \frac{k-2}{4} + v_{5}(k+2), & \text{if } k \equiv 18 \pmod{20}. \end{cases}$$

JUNE-JULY

Notice that for $n = a \cdot 5^q$, 4|a, (a, 5) = 1, and q sufficiently large, $v_5(k!S(n, k))$ can depend on n only if k is odd. Actually, it does depend on n if and only if k/5 is an odd integer. The proof will appear in a forthcoming paper. We note that the above identities are generalizations of the identity $v_2(k!S(n, k)) = k - 1$, where $n = a \cdot 2^q$, a is odd, and q is sufficiently large (see [9]).

ACKNOWLEDGMENT

The author would like to thank the referee for helpful comments and for drawing his attention to a significant reference.

REFERENCES

- 1. F. Clarke. "Hensel's Lemma and the Divisibility by Primes of Stirling-Like Numbers." Preprint, 1993.
- D. M. Davis. "Divisibility by 2 of Stirling-Like Numbers." Proceedings of the American Mathematical Society 110 (1990): 597-600.
- 3. I. Gessel. "Congruences for Bell and Tangent Numbers." The Fibonacci Quarterly 19.2 (1981):137-44.
- R. L. Graham, D. E. Knuth, & O. Patashnik. Concrete Mathematics. Reading, MA: Addison-Wesley, 1989.
- 5. J. H. Halton. "On the Divisibility Properties of Fibonacci Numbers." *The Fibonacci Quarterly* **4.3** (1966):217-40.
- 6. E. Jacobson. "Distribution of the Fibonacci Numbers Mod 2^k." The Fibonacci Quarterly **30.3** (1992):211-15.
- 7. D. E. Knuth & H. S. Wilf. "The Power of a Prime that Divides a Generalized Binomial Coefficient." J. Reine Angew. Math. 396 (1989):212-19.
- 8. Y. H. Harris Kwong. "Periodicities of a Class of Infinite Integer Sequences Modulo M." J. Number Theory **31** (1989):64-79.
- 9. T. Lengyel. "On the Divisibility by 2 of the Stirling Numbers of the Second Kind." *The Fibonacci Quarterly* **32.3** (1994):194-201.
- A. Lundell. "A Divisibility Property for Stirling Numbers." J. Number Theory 10 (1978):35-54.
- 11. A. Nijenhuis & H. S. Wilf. "Periodicities of Partition Functions and Stirling Numbers Modulo p." J. Number Theory 25 (1987):308-12.
- 12. P. Ribenboim. The Little Book of Big Primes. New York-Berlin: Springer-Verlag, 1990.
- 13. D. W. Robinson. "The Fibonacci Matrix Modulo *m*." The Fibonacci Quarterly 1.2 (1963): 29-36.
- 14. M. Sved. "Divisibility-With Divisibility." Math. Intelligencer 10 (1988):56-64.
- 15. J. Vinson. "The Relation of the Period Modulo *m* to the Rank of Apparition of *m* in the Fibonacci Sequence." *The Fibonacci Quarterly* **1.2** (1963):37-45.
- 16. D. D. Wall. "Fibonacci Series Modulo m." Amer. Math. Monthly 67 (1960):525-32.
- 17. H. Wilcox. "Fibonacci Sequences of Period *n* in Groups." *The Fibonacci Quarterly* 24.4 (1986):356-61.

AMS Classification Numbers: 11B39, 11B50, 11B73
