A NOTE ON A GENERAL CLASS OF POLYNOMIALS, PART II

Richard André-Jeannin
IUT GEA, Route de Romain, 54400 Longwy, France
(Submitted February 1994)

1. INTRODUCTION

In an earlier article [1] the author has discussed the properties of a set of polynomials $\left\{U_{n}(p, q ; x)\right\}$ defined by

$$
\begin{equation*}
U_{n}(p, q ; x)=(x+p) U_{n-1}(p, q ; x)-q U_{n-2}(p, q ; x), n \geq 2, \tag{1.1}
\end{equation*}
$$

with $U_{0}(p, q ; x)=0$ and $U_{1}(p, q ; x)=1$.
Here and in the sequel the parameters p and q are arbitrary real numbers, and we denote by α, β the numbers such that $\alpha+\beta=p$ and $\alpha \beta=q$.

The aim of the present paper is to investigate the companion sequence of polynomials $\left\{V_{n}(p, q ; x)\right\}$ defined by

$$
\begin{equation*}
V_{n}(p, q ; x)=(x+p) V_{n-1}(p, q ; x)-q V_{n-2}(p, q ; x), n \geq 2 \tag{1.2}
\end{equation*}
$$

with $V_{0}(p, q ; x)=2$ and $V_{1}(p, q ; x)=x+p$.
The first few terms of the sequence $\left\{V_{n}(p, q ; x)\right\}$ are

$$
\begin{aligned}
& V_{2}(p, q ; x)=\left(p^{2}-2 q\right)+2 p x+x^{2}, \\
& V_{3}(p, q ; x)=\left(p^{3}-3 p q\right)+\left(3 p^{2}-3 q\right) x+3 p x^{2}+x^{3}, \\
& V_{4}(p, q ; x)=\left(p^{4}-4 p^{2} q+2 q^{2}\right)+\left(4 p^{3}-8 p q\right) x+\left(6 p^{2}-4 q\right) x^{2}+4 p x^{3}+x^{4} .
\end{aligned}
$$

We see by induction that there exists a sequence $\left\{d_{n, k}(p, q)\right\}_{\substack{n \geq \geq 1 \\ k \geq 0}}$ of numbers such that

$$
\begin{equation*}
V_{n}(p, q ; x)=\sum_{k \geq 0} d_{n, k}(p, q) x^{k}, \underline{n \geq 1}, \tag{1.3}
\end{equation*}
$$

with $d_{n, k}(p, q)=0$ if $k \geq n+1$ and $d_{n, k}(p, q)=1$ if $k=n$. For the sake of convenience, we define the sequence $\left\{d_{0, k}(p, q)\right\}$ by

$$
\begin{equation*}
d_{0,0}(p, q)=1 \text { and } d_{0, k}(p, q)=0 \text { if } k \geq 1 . \tag{1.4}
\end{equation*}
$$

Notice that $V_{0}(p, q ; x)=2=2 d_{0,0}(p, q)$.
Special cases of $\left\{V_{n}(p, q ; x)\right\}$ which interest us are the Lucas polynomials $L_{n}(x)$ [2], the PellLucas polynomials $Q_{n}(x)$ [7], the second Fermat polynomial sequence $\theta_{n}(x)$ [8], and the Chebyschev polynomials of the first kind $T_{n}(x)$ given by

$$
\begin{align*}
V_{n}(0,-1 ; x) & =L_{n}(x), \\
V_{n}(0,-1 ; 2 x) & =Q_{n}(x), \tag{1.5}\\
V_{n}(0,2 ; x) & =\theta_{n}(x), \\
V_{n}(0,1 ; 2 x) & =2 T_{n}(x) .
\end{align*}
$$

Another interesting case is the Morgan-Voyce recurrence ([1], [5], [9], [10]. and [11]) given by $p=2$ and $q=1$ (or $\alpha=\beta=1$). In the sequel, we shall denote by $C_{n}(x)=V_{n}(2,1 ; x)$ this new kind of Morgan-Voyce polynomials, defined by

$$
\begin{equation*}
C_{0}(x)=2, C_{1}(x)=x+2, \text { and } C_{n}(x)=(x+2) C_{n-1}(x)-C_{n-2}(x), n \geq 2 \tag{1.6}
\end{equation*}
$$

Remark 1.1: One can notice that $C_{n}\left(x^{2}\right)=L_{2 n}(x)$. Actually, it is well known and readily proven that the sequence $\left\{L_{2 n}(x)\right\}$ satisfies the recurrence relation $L_{2 n}(x)=\left(x^{2}+2\right) L_{2 n-2}(x)-L_{2 n-4}(x)$, where $L_{0}(x)=2$ and $L_{2}(x)=x^{2}+2$. The result follows by this and (1.6).

It is clear that the sequence $\left\{V_{n}(p, q ; 0)\right\}$ is the generalized Lucas sequence defined by

$$
V_{n}(p, q ; 0)=p V_{n-1}(p, q ; 0)-q V_{n-2}(p, q ; 0), n \geq 2
$$

with $V_{0}(p, q ; 0)=2$ and $V_{1}(p, q ; 0)=p$. Therefore, $V_{n}(p, q ; 0)=\alpha^{n}+\beta^{n}$. By (1.3), notice that

$$
\begin{equation*}
d_{n, 0}(p, q)=V_{n}(p, q ; 0)=\alpha^{n}+\beta^{n}, \text { for } n \geq 1 \tag{1.8}
\end{equation*}
$$

More generally, our aim is to express the coefficient $d_{n, k}(p, q)$ as a polynomial in (α, β) and as a polynomial in (p, q).

2. PRELIMINARIES

In this section we shall gather the results about polynomials $\left\{U_{n}(p, p ; x)\right\}(1.1)$ which will be needed in the sequel. The reader may wish to consult [1].

Define the sequence $\left\{c_{n, k}(p, q)\right\}_{\substack{n \geq 0 \\ k \geq 0}}$ by

$$
\begin{equation*}
U_{n+1}(p, q ; x)=\sum_{k \geq 0} c_{n, k}(p, q) x^{k} \tag{2.1}
\end{equation*}
$$

where $c_{n, k}(p, q)=0$, for $k>n$. It was shown in [1] that
For every $n \geq 2$ and $k \geq 1$,

$$
\begin{equation*}
c_{n, k}(p, q)=p c_{n-1, k}(p, q)-q c_{n-2, k}(p, q)+c_{n-1, k-1}(p, q) \tag{2.2}
\end{equation*}
$$

For every $n \geq 0$ and $k \geq 0$,

$$
\begin{equation*}
c_{n, k}(p, q)=\sum_{i+j=n-k}\binom{k+i}{k}\binom{k+j}{k} \alpha^{i} \beta^{j} \tag{2.3}
\end{equation*}
$$

If $p^{2}=4 q$, then $\alpha=\beta=p / 2$ and (2.3) becomes

$$
\begin{equation*}
c_{n, k}(p, q)=\binom{n+k+1}{2 k+1}(p / 2)^{n-k} \tag{2.4}
\end{equation*}
$$

If $p=0$, then $\alpha=-\beta=p, \alpha^{2}=-q$, and (2.3) becomes

$$
\begin{cases}c_{n, n-2 k}(0, q)=(-1)^{k}\binom{n-k}{k} q^{k}, & n-2 k \geq 0 \tag{2.5}\\ c_{n, n-2 k-1}(0, q)=0, & n-2 k-1 \geq 0\end{cases}
$$

For every $n \geq 0$ and $k \geq 0$,

$$
\begin{equation*}
c_{n, k}(p, q)=\sum_{r=0}^{[n-k)^{2]}}(-1)^{r}\binom{n-r}{r}\binom{n-2 r}{k} q^{r} p^{n-2 r-k} . \tag{2.6}
\end{equation*}
$$

The generating function of the sequence $\left\{U_{n}(p, q ; x)\right\}$ is given by

$$
\begin{equation*}
f(p, q ; x, t)=\sum_{n \geq 0} U_{n+1}(p, q ; x) t^{n}=\frac{1}{1-(x+p) t+q t^{2}} . \tag{2.7}
\end{equation*}
$$

The generating function $F_{k}(p, q ; t)$ of the $k^{\text {th }}$ column of coefficients $c_{n, k}(p, q)$ is given by

$$
\begin{equation*}
F_{k}(p, q ; t)=\sum_{n \geq 0} c_{n+k, k} t^{n}=\frac{1}{\left(1-p t+q t^{2}\right)^{k+1}} . \tag{2.8}
\end{equation*}
$$

For every $n \geq 0$, we have

$$
\begin{equation*}
U_{n+1}(p, q ; 0)=\sum_{r=0}^{[n / 2]}(-1)^{r}\binom{n-r}{r} q^{r} p^{n-2 r} . \tag{2.9}
\end{equation*}
$$

3. THE TRIANGLE OF COEFFICIENTS

One can display the sequence $\left\{d_{n, k}(p, q)\right\}_{\substack{n \geq 0 \\ k \geq 0}}(1.3)$ in a triangle, thus,

TABLE 3.1

n	0	1	2	3	4
0	1	0	0	0	0
1	p	1	0	0	0
2	$p^{2}-2 q$	$2 p$	1	0	0
3	$p^{3}-3 p q$	$3 p^{2}-3 q$	$3 p$	1	0
4	$p^{4}-4 p^{2} q+2 q^{2}$	$4 p^{3}-8 p q$	$6 p^{2}-4 q$	$4 p$	1

For instance, the triangle of coefficients of the sequence $\left\{C_{n}(x)\right\}$ (1.6) is

TABLE 3.2

< k	0	1	2	3	4	5	6
0	1	0	0	0	0	0	0
1	2	1	0	0	0	0	0
2	2	4	1	0	0	0	0
3	2	9	6	1	0	0	0
4	2	16	20	8	1	0	0
5	2	25	50	35	10	1	0
6	2	36	105	112	54	12	

Theorem 3.1: For every $n \geq 0$ and $k \geq 0$ we have

$$
d_{n, k+1}(p, q)=\frac{1}{k+1} \frac{\partial d_{n, k}}{\partial p} .
$$

Proof: One can suppose that $n \geq 1$ and it is clear by (1.2) that $V_{n}(p, q ; x)=V_{n}(0, q ; x+p)$. From this, we see that $V_{n}^{(k)}(p, q ; x)=V_{n}^{(k)}(0, q ; x+p)$, where the superscript in parentheses denotes the $k^{\text {th }}$ derivative with respect to x. Thus, by Taylor's formula and (1.3),

$$
\begin{equation*}
d_{n, k}(p, q)=\frac{V_{n}^{(k)}(p, q ; 0)}{k!}=\frac{V_{n}^{(k)}(0, q ; p)}{k!} . \tag{3.1}
\end{equation*}
$$

Notice that these equalities are valid for every value of p. Now let us differentiate the first and the last member of (3.1) with respect to p (q being fixed) to get

$$
\frac{\partial d_{n, k}}{\partial p}=\frac{V_{n}^{(k+1)}(0, q ; p)}{k!}=(k+1) d_{n, k+1}(p, q) .
$$

The result can be checked against Table 3.1.
Remark 3.1: One can get the same result for the coefficient $c_{n, k}(p, q)$ (2.1), namely,

$$
\frac{\partial c_{n, k}}{\partial p}=(k+1) c_{n, k+1}(p, q) .
$$

Comparing the coefficients of x^{k} in the two members of (1.3), we see by (1.2) that, for $n \geq 2$ and $k \geq 1$,

$$
\begin{equation*}
d_{n, k}(p, q)=d_{n-1, k-1}(p, q)+p d_{n-1, k}(p, q)-q d_{n-2, k}(p, q), \tag{3.2}
\end{equation*}
$$

which is a relation similar to (2.2). From this, one can obtain another recurrence relation.
Theorem 3.2: For every $n \geq 1$ and $k \geq 1$, we have

$$
\begin{align*}
d_{n, k}(p, q) & =\beta d_{n-1, k}(p, q)+\sum_{i=0}^{n-1} \alpha^{n-i-1} d_{i, k-1}(p, q) \tag{3.3}\\
& =\alpha d_{n-1, k}(p, q)+\sum_{i=0}^{n-1} \beta^{n-1-i} d_{i, k-1}(p, q) .
\end{align*}
$$

Proof: In fact, (3.3) is clear by direct computation for $n \leq 2$ [recall that $d_{0,0}(p, q)=1$ and that $\alpha+\beta=p$]. Using (3.2), we see that the end of the proof is analogous to the proof of Theorem 1 in [1].

For instance, in the case of the Morgan-Voyce polynomial $C_{n}(x)$ (1.6) we have $\alpha=\beta=1$, and (3.2) becomes (see Table 3.2)

$$
d_{n, k}(2,1)=d_{n-1, k}(2,1)+\sum_{i=0}^{n-1} d_{i, k+1}(2,1),
$$

which is the recursive definition of the DFF and DFFz triangles (see [3], [4], [5]) known to be the triangle of coefficients of the usual Morgan-Voyce polynomials.

4. DETERMINATION OF $\boldsymbol{d}_{n, k}(p, q)$ AS A POLYNOMIAL IN (α, β)

The determination of $d_{n, k}(p, q)$ will proceed easily from the following lemmas. The first of these is a well-known result on second-order recurring sequences that can be proven by induction using (1.1) and (1.2).

Lemma 4.1: For every $n \geq 1$, we have

$$
\begin{equation*}
V_{n}(p, q ; x)=U_{n+1}(p, q ; x)-q U_{n-1}(p, q ; x) . \tag{4.1}
\end{equation*}
$$

Lemma 4.2: For every $n \geq 0$, we have

$$
\begin{equation*}
V_{n}^{\prime}(p, q ; x)=n U_{n}(p, q ; x), \tag{4.2}
\end{equation*}
$$

where the prime represents the first derivative w.r.t. x.
Proof: By (1.1) and (1.2), the result is clear if $n=0$ or $n=1$. Assuming the result is true for $n \geq 1$, we obtain by (1.2),

$$
\begin{aligned}
V_{n+1}^{\prime}(p, q ; x) & =(x+p) V_{n}^{\prime}(p, q ; x)-q V_{n-1}^{\prime}(p, q ; x)+V_{n}(p, q ; x) \\
& =n\left[(x+p) U_{n}(p, q ; x)-q U_{n-1}(p, q ; x)\right]+V_{n}(p, q ; x)+q U_{n-1}(p, q ; x) \\
& =n U_{n+1}(p, q ; x)+U_{n+1}(p, q ; x) \quad \text { by (1.1) and (4.1), } \\
& =(n+1) U_{n+1}(p, q ; x) .
\end{aligned}
$$

This concludes the proof of Lemma 4.2.
Lemma 4.3: For every $n \geq 1$ and $k \geq 1$, we have

$$
\begin{equation*}
d_{n, k}(p, q)=\frac{n}{k} c_{n-1, k-1}(p, q) . \tag{4.3}
\end{equation*}
$$

Proof: Comparing the coefficients of x^{k-1} in the two members of (4.2) we see by (1.3) and (2.1) that

$$
k d_{n, k}(p, q)=n c_{n-1, k-1}(p, q), n \geq 1, k \geq 1 .
$$

Lemma 4.3 and (2.3) yield
Theorem 4.1: For every $n \geq 1$ and $k \geq 1$, we have

$$
\begin{equation*}
d_{n, k}(p, q)=\frac{n}{k} \sum_{i+j=n-k}\binom{k+i-1}{k-1}\binom{k+j-1}{k-1} \alpha^{i} \beta^{j} . \tag{4.4}
\end{equation*}
$$

Remark 4.1: Recall from (1.8) that $d_{n, 0}(p, q)=\alpha^{n}+\beta^{n}($ for $n>0)$, an expression which can be compared with (4.4).

Let us examine two particular cases.
(i) Firstly, supposing that $p^{2}=4 q$ (or $\alpha=\beta=p / 2$), then by (2.4) we see that equation (4.3) becomes

$$
\begin{align*}
d_{n, k}(p, q) & =\frac{n}{k}\binom{n+k-1}{2 k-1}(p / 2)^{n-k}, n \geq 1, k \geq 1, \\
& =\frac{2 n}{n+k}\binom{n+k}{2 k}(p / 2)^{n-k} . \tag{4.5}
\end{align*}
$$

Notice that this last expression is again valid if $k=0$, since $d_{n, 0}(p, q)=\alpha^{n}+\beta^{n}=2(p / 2)^{n}$. We also see that $d_{n, 1}(p, q)=n^{2}(p / 2)^{n-1}$ (see Table 3.2, where $p=2$). For instance, the decomposition of the polynomial $C_{n}(x)$ (1.6) is given by

$$
\begin{aligned}
C_{n}(x) & =2+\sum_{k=1}^{n} \frac{n}{k}\binom{n+k-1}{2 k-1} x^{k}, \text { for } n \geq 1, \\
& =2 \sum_{k=0}^{n} \frac{n}{n+k}\binom{n+k}{2 k} x^{k} .
\end{aligned}
$$

(ii) Secondly, supposing that $p=0$, we have $\alpha=-\beta, q=-\alpha^{2}$, and by (2.5) we see that equation (4.3) becomes, for $n \geq 1$,

$$
\begin{align*}
d_{n, n-2 k}(0, q) & =\frac{n}{n-2 k}(-1)^{k}\binom{n-1-k}{k} q^{k} \\
& =\frac{n}{n-k}(-1)^{k}\binom{n-k}{k} q^{k}, \text { for } n-2 k \geq 1 . \tag{4.6}
\end{align*}
$$

Notice that the last member is again defined for $n-2 k=0(k \geq 1)$ with value $2(-1)^{k} q^{k}$. Now, by Remark 4.1, we get that

$$
d_{2 k, 0}(0, q)=\alpha^{2 k}+\beta^{2 k}=2(-1)^{k} q^{k}, \text { for } k \geq 1
$$

We deduce from these remarks that (4.6) is again true if $n=2 k(k \geq 1)$. On the other hand, we see by (2.5) that equation (4.3) becomes

$$
\begin{equation*}
d_{n, n-2 k-1}(0, q)=0, \text { for } n-2 k-1 \geq 1 . \tag{4.7}
\end{equation*}
$$

Now by Remark 4.1 we have

$$
d_{2 k+1,0}(0, q)=\alpha^{2 k+1}+\beta^{2 k+1}=0, \text { for } k \geq 0
$$

We deduce from these remarks that (4.7) is again true if $n-2 k-1=0(k \geq 0)$. Now, by (1.3),

$$
\begin{aligned}
V_{n}(0, q ; x) & =\sum_{k=0}^{n} d_{n, k}(0, q) x^{k}=\sum_{k=0}^{n} d_{n, n-k}(0, q) x^{n-k} \\
& =\sum_{k=0}^{[n / 2]} d_{n, n-2 k}(0, q) x^{n-2 k} .
\end{aligned}
$$

Thus, by (4.6) and (4.7) we get

$$
\begin{equation*}
V_{n}(0, q ; x)=\sum_{k=0}^{[n / 2]}(-1)^{k} \frac{n}{n-k}\binom{n-k}{k} q^{k} x^{n-2 k}, \text { for } n \geq 1 \tag{4.8}
\end{equation*}
$$

If $p=0$ and $q=-1$, we obtain the known decomposition of Lucas polynomials $L_{n}(x)$ and of PellLucas polynomials $Q_{n}(x)=L_{n}(2 x)$ (see [7]), namely,

$$
L_{n}(x)=\sum_{k=0}^{[n / 2]} \frac{n}{n-k}\binom{n-k}{k} x^{n-2 k}, \text { for } n \geq 1 .
$$

The reader can also obtain similar formulas for the Chebyschev polynomials of the first kind ($p=0, q=1$), and for the second Fermat polynomial sequence ($p=0, q=2$).

5. DETERMINATION OF $d_{n, k}(p, q)$ AS A POLYNOMIAL IN (p, q)

Theorem 5.1: For every $n \geq 1$ and $k \geq 0$, we have

$$
\begin{equation*}
d_{n, k}(p, q)=\sum_{r=0}^{[(n-k) / 2]}(-1)^{r} \frac{n}{n-r}\binom{n-r}{r}\binom{n-2 r}{k} q^{r} p^{n-2 r-k} . \tag{5.1}
\end{equation*}
$$

Proof: By (3.1) we know that

$$
d_{n, k}(p, q)=\frac{V_{n}^{(k)}(0, q ; p)}{k!},
$$

and by (4.8) one can express the right member as

$$
\begin{aligned}
& \sum_{r=0}^{[n / 2]}(-1)^{r} \frac{n}{n-r}\binom{n-r}{r} q^{r} \frac{(n-2 r) \cdots(n-2 r-k+1)}{k!} p^{n-2 r-k} \\
& =\sum_{r=0}^{[(n-k) / 2]}(-1)^{r} \frac{n}{n-r}\binom{n-r}{r}\binom{n-2 r}{k} q^{r} p^{n-2 r-k} .
\end{aligned}
$$

This completes the proof of Theorem 5.1.
Remark 5.1: If $k=0$, we get by (1.8) the known Waring formula, namely,

$$
\alpha^{n}+\beta^{n}=\sum_{r=0}^{[n / 2]}(-1)^{r} \frac{n}{n-r}\binom{n-r}{r}(\alpha \beta)^{r}(\alpha+\beta)^{n-2 r}, \text { for } n \geq 1
$$

6. GENERATING FUNCTIONS

Define the generating function of the sequence $\left\{V_{n}(p, q ; x)\right\}$ by

$$
\begin{equation*}
g(p, q ; x, t)=V_{0}(p, q ; x) / 2+\sum_{n \geq 1} V_{n}(p, q ; x) t^{n} . \tag{6.1}
\end{equation*}
$$

For brevity, we put $g(p, q ; x, t)=g(x, t)$ and $V_{n}(p, q ; x)=V_{n}(x)$. By (6.1) and (1.2) we get, since $V_{0}(x)=2$ and $V_{1}(x)=x+p$,

$$
\begin{aligned}
g(x, t) & =1+(x+p) t+(x+p) t \sum_{n \geq 2} V_{n-1}(x) t^{n-1}-q t^{2} \sum_{n \geq 2} V_{n-2}(x) t^{n-2} \\
& =1+(x+p) t+(x+p) t[g(x, t)-1]-q t^{2}[g(x, t)+1],
\end{aligned}
$$

and from this we deduce easily that

$$
\begin{equation*}
g(x, t)=\frac{1-q t^{2}}{1-(x+p) t+q t^{2}} . \tag{6.2}
\end{equation*}
$$

Let us define now the generating function of the $k^{\text {th }}$ column of the triangle $d_{n, k}(p, q)$ in Table 3.1 by

$$
\begin{equation*}
G_{k}(p, q ; t)=\sum_{n \geq 0} d_{n+k, k}(p, q) t^{n}, k \geq 0 . \tag{6.3}
\end{equation*}
$$

From (6.2), one can obtain a closed expression for the function G_{k}, namely,
Theorem 6.1: For every $k \geq 0$, we have

$$
\begin{equation*}
G_{k}(p, q ; t)=\frac{1-q t^{2}}{\left(1-p t+q t^{2}\right)^{k+1}} . \tag{6.4}
\end{equation*}
$$

Proof: For brevity, we omit parameters p and q in expressions for $g(p, q ; x, t), V_{n}(p, q ; x)$, $d_{n, k}(p, q)$, and $G_{k}(p, q ; t)$. If $k=0$, we have by (6.3), (1.3), and (1.4)

$$
\begin{aligned}
G_{0}(t) & =\sum_{n \geq 0} d_{n, 0} t^{n}=1+\sum_{n \geq 1} V_{n}(0) t^{n} \\
& =g(0, t)=\frac{1-q t^{2}}{1-p t+q t^{2}}, \text { by }(6.2) .
\end{aligned}
$$

Assuming now that $k \geq 1$, (6.1) and (6.2) yield

$$
\frac{k!t^{k}\left(1-q t^{2}\right)}{\left(1-(x+p) t+q t^{2}\right)^{k+1}}=\frac{\partial^{k}}{\partial x^{k}} g(x, t)=\sum_{n \geq 1} V_{n}^{(k)}(x) t^{n}=\sum_{n \geq 0} V_{n+k}^{(k)}(x) t^{n+k},
$$

since $V_{n}(x)$ is a polynomial of degree n.
Put $x=0$ in the last formula and recall that $d_{n+k, k}=\frac{V_{n k}^{(k)}(0)}{k!}$ by (1.3) and Taylor's formula, to obtain

$$
\frac{1-q t^{2}}{\left(1-p t+q t^{2}\right)^{k+1}}=\sum_{n \geq 0} d_{n+k, k} t^{n}=G_{k}(t) .
$$

Hence, the theorem.
Formulas (6.2) and (6.4) can be compared with (2.7) and (2.8).

7. RISING DIAGONAL FUNCTIONS

Define the rising diagonal functions $\Pi_{n}(p, q ; x)$ of the sequence $\left\{d_{n, k}(p, q)\right\}$ by

$$
\begin{equation*}
\Pi_{n}(p, q ; x)=\sum_{k=0}^{n} d_{n-k, k}(p, q) x^{k}=\sum_{k=0}^{[n / 2]} d_{n-k, k}(p, q) x^{k}, n \geq 1 . \tag{7.1}
\end{equation*}
$$

From Table 3.1, notice that

$$
\begin{equation*}
\Pi_{1}(x)=p, \Pi_{2}(x)=\left(p^{2}-2 q\right)+x, \text { and } \Pi_{3}(x)=\left(p^{3}-3 p q\right)+2 p x, \tag{7.2}
\end{equation*}
$$

where, for brevity, we put $\Pi_{n}(x)$ for $\Pi_{n}(p, q ; x)$.
Theorem 7.1: For every $n \geq 3$, we have

$$
\begin{equation*}
\Pi_{n}(x)=p \Pi_{n-1}(x)+(x-q) \Pi_{n-2}(x) . \tag{7.3}
\end{equation*}
$$

Proof: By (7.2), the statement holds for $n=3$. Supposing the result is true for $n \geq 3$, we get by (7.1),

$$
\Pi_{n+1}(x)=d_{n+1,0}+\sum_{k=1}^{[(n+1) / 2]} d_{n+1-k, k} x^{k}
$$

Recall from (1.2) and (1.8) that $d_{n+1,0}=V_{n+1}(0)=p d_{n, 0}-q d_{n-1,0}$ and notice that $n+1-k \geq n+1-$ $[(n+1) / 2] \geq 2$, since $n \geq 3$. By these remarks and (3.2), one can see that

$$
\begin{aligned}
\Pi_{n+1}(x) & =p d_{n, 0}-q d_{n-1,0}+\sum_{k=1}^{[(n+1) / 2]}\left(d_{n-k, k-1}+p d_{n-k, k}-q d_{n-1-k, k}\right) x^{k} \\
& =p \sum_{k=0}^{[(n+1) / 2]} d_{n-k, k} x^{k}-q \sum_{k=0}^{[(n+1) / 2]} d_{n-1-k, k} x^{k}+x \sum_{k=0}^{[(n+1) / 2]-1} d_{n-1-k, k} x^{k} \\
& =p \Pi_{n}(x)+(x-q) \Pi_{n-1}(x)
\end{aligned}
$$

since $[(n+1) / 2]-1=[(n-1) / 2]$. Hence, the theorem.
Corollary 7.1: For every $n \geq 1$, we have

$$
\begin{equation*}
\Pi_{n}(p, q ; x)=U_{n+1}(p, q-x ; 0)-q U_{n-1}(p, q-x ; 0) \tag{7.4}
\end{equation*}
$$

Proof: By (1.1) the sequence $\left\{U_{n}(p, q-x ; 0)\right\}$ satisfies the recurrence (7.3) with

$$
U_{0}(p, q-x ; 0)=0, U_{1}(p, q-x ; 0)=1, U_{2}(p, q-x ; 0)=p, U_{3}(p, q-x ; 0)=\left(p^{2}-q\right)+x
$$

From this and (7.2), it is readily verified that (7.4) holds for $n=1$ and $n=2$, and the conclusion follows since the two members of (7.4) satisfy recurrence (7.3).

Corollary 7.2: For every $n \geq 1$, we have

$$
\Pi_{n}(x)=\binom{n-[n / 2]}{[n / 2]} p^{n-2[n / 2]}(x-q)^{[n / 2]}+\sum_{r=0}^{[(n-2) / 2]} p^{n-2-2 r}(x-q)^{r}\left[\binom{n-r}{r} p^{2}-\binom{n-2-r}{r} q\right] .
$$

Proof: From (2.9), we get that

$$
U_{n+1}(p, q-x ; 0)=\sum_{r=0}^{[n / 2]}\binom{n-r}{r}(x-q)^{r} p^{n-2 r}
$$

and the result follows by this and Corollary 7.1.
Let us examine two particular cases.
(i) If $x=q$, then by (7.1)

$$
\Pi_{n}(p, q ; q)=\sum_{k=0}^{[n / 2]} d_{n-k, k}(p, q) q^{k}=p^{n-2}\left(p^{2}-q\right), \text { for } n \geq 2
$$

For instance, if $p=2$ and $q=1$ [Morgan-Voyce polynomial $C_{n}(x)(1.6)$], we get

$$
\sum_{k=0}^{[n / 2]} d_{n-k, k}(2,1)=3 \cdot 2^{n-2}, n \geq 2
$$

(ii) If $p=0$, then

$$
\Pi_{2 m}(0, q ; x)=\sum_{k=0}^{m} d_{2 m-k, k}(0, q) x^{k}=(x-q)^{m-1}(x-2 q), \text { for } m \geq 1
$$

For instance, if $p=0$ and $q=1$ (Chebyschev polynomials of the first kind), or if $p=0$ and $q=2$ (second Fermat polynomials), this identity, with slightly different notations, was noticed by Horadam [8].

8. ORTHOGONALITY OF THE SEQUENCE $\left\{\boldsymbol{V}_{\boldsymbol{n}}(\boldsymbol{p}, \boldsymbol{q} ; \boldsymbol{x})\right\}$

In this section we shall suppose that $q>0$. Consider the sequence $\left\{W_{n}(p, q ; x)\right\}$ defined by

$$
\begin{equation*}
W_{n}(p, q ; x)=2 q^{n / 2} T_{n}\left(\frac{x+p}{2 \sqrt{q}}\right), \tag{8.1}
\end{equation*}
$$

where $T_{n}(x)$ is the $n^{\text {th }}$ Chebyschev polynomial of the first kind. Notice that

$$
\left\{\begin{array}{l}
W_{0}(p, q ; x)=2 \tag{8.2}\\
W_{1}(p, q ; x)=x+p
\end{array}\right.
$$

The recurrence relation of Chebyschev polynomials yields, for $n \geq 2$,

$$
\begin{align*}
W_{n}(p, q ; x) & =2 q^{n / 2}\left[\left(\frac{x+p}{\sqrt{q}}\right) T_{n-1}\left(\frac{x+p}{2 \sqrt{q}}\right)-T_{n-2}\left(\frac{x+p}{2 \sqrt{q}}\right)\right] \\
& =(x+p)\left[2 q^{(n-1) / 2} T_{n-1}\left(\frac{x+p}{2 \sqrt{q}}\right)\right]-q\left[2 q^{(n-2) / 2} T_{n-2}\left(\frac{x+p}{2 \sqrt{q}}\right)\right] \tag{8.3}\\
& =(x+p) W_{n-1}(p, q ; x)-q W_{n-2}(p, q ; x) .
\end{align*}
$$

From (8.2) and (8.3), we get that

$$
\begin{equation*}
W_{n}(p, q ; x)=V_{n}(p, q ; x), \text { for } n \geq 0 . \tag{8.4}
\end{equation*}
$$

Recalling that the sequence $\left\{T_{n}(x)\right\}$ is orthogonal over $[-1,+1]$ with respect to the weight $\left(1-x^{2}\right)^{-1 / 2}$, we deduce from this that the sequence $\left\{V_{n}(p, q ; x)\right\}$ is orthogonal over $[-p-2 \sqrt{q}$, $-p+2 \sqrt{q}]$ with respect to the weight $w(x)=\left(-x^{2}-2 p x-\Delta\right)^{-1 / 2}$, where $\Delta=p^{2}-4 q$. The proof is similar to that in [1], Section 7.
-If $\omega=\cos t(0 \leq t \leq \pi)$, it is well known that $T_{n}(\omega)=\cos n t$. Thus, by (8.1) and (8.4) we have

$$
V_{n}(p, q ;-p+2 \omega \sqrt{q})=2 q^{n / 2} T_{n}(\omega)=2 q^{n / 2} \cos n t .
$$

Hence, we see that the roots of $V_{n}(p, q ; x)$ are given by

$$
x_{k}=-p+2 \sqrt{q} \cos \left(\frac{(2 k+1) \pi}{2 n}\right), n \geq 1 ; k=0, \ldots,(n-1) .
$$

For instance, the roots of the Morgan-Voyce polynomial $C_{n}(x)$ (1.6) are

$$
x_{k}=-2+2 \cos \left(\frac{(2 k+1) \pi}{2 n}\right)=-4 \sin ^{2}\left(\frac{(2 k+1) \pi}{4 n}\right), k=0, \ldots,(n-1) .
$$

By Remark 1.1 we know that $C_{n}\left(x^{2}\right)=L_{2 n}(x)$. Thus, the roots of $L_{2 n}(x)$ are given by (see [6])

$$
x_{k}^{\prime}= \pm 2 i \sin \left(\frac{(2 k+1) \pi}{4 n}\right), k=0, \ldots,(n-1)
$$

where $i=\sqrt{-1}$. On the other hand, the roots of the second Fermat polynomial $\theta_{n}(x)=V_{n}(0,2 ; x)$ are

$$
x_{k}=2 \sqrt{2} \cos \left(\frac{(2 k+1) \pi}{2 n}\right), k=0, \ldots,(n-1) .
$$

9. CONCLUDING REMARK

In a future paper we shall investigate the differential properties of the sequences $\left\{U_{n}(p, q ; x)\right\}$ and $\left\{V_{n}(p, q ; x)\right\}$.

ACKNOWLEDGMENT

The author would like to thank the referee for helpful and detailed comments.

REFERENCES

1. R. André-Jeannin. "A Note on a General Class of Polynomials." The Fibonacci Quarterly 32.5 (1994):445-55.
2. M. Bicknell. "A Primer for the Fibonacci Numbers: Part VII." The Fibonacci Quarterly 8.4 (1970):407-20.
3. G. Ferri, M. Faccio, \& A. D'Amico. "A New Numerical Triangle Showing Links with Fibonacci Numbers." The Fibonacci Quarterly 29.4 (1991):316-21.
4. G. Ferri, M. Faccio, \& A. D'Amico. "Fibonacci Numbers and Ladder Network Impedance." The Fibonacci Quarterly 30.1 (1992):62-67.
5. G. Ferri, M. Faccio, \& A. D'Amico. "The DFF and DFFz Triangles and Their Mathematical Properties." In Applications of Fibonacci Numbers 5. Ed. A. N. Philippou, G. E. Bergum, \& A. F. Horadam. Dordrecht: Kluwer, 1994.
6. V. E. Hoggatt, Jr., \& Marjorie Bicknell. "Roots of Fibonacci Polynomials." The Fibonacci Quarterly 11.3 (1973):271-74.
7. A. F. Horadam \& Br. J. M. Mahon. "Pell and Pell-Lucas Polynomials." The Fibonacci Quarterly 23.1 (1985):7-20.
8. A. F. Horadam. "Chebyschev and Fermat Polynomials for Diagonal Functions." The Fibonacci Quarterly 19.4 (1979):328-33.
9. J. Lahr. "Fibonacci and Lucas Numbers and the Morgan-Voyce Polynomials in Ladder Networks and in Electrical Line Theory." In Fibonacci Numbers and Their Applications 1:14161. Ed. A. N. Philippou, G. E. Bergum, \& A. F. Horadam. Dordrecht: Kluwer, 1986.
10. M. N. S. Swamy. "Properties of the Polynomials Defined by Morgan-Voyce." The Fibonacci Quarterly 4.1 (1966):73-81.
11. M. N. S. Swamy. "Further Properties of Morgan-Voyce Polynomials." The Fibonacci Quarterly 6.2 (1968):165-75.

AMS Classification Numbers: 11B39, 33C25

