
A NOTE ON A GENERAL CLASS OF POLYNOMIALS, PART II 

Richard Andre-Jeannln 
IUT GEA, Route de Romain, 54400 Longwy, France 

(Submitted February 1994) 

1. INTRODUCTION 

In an earlier article [1] the author has discussed the properties of a set of polynomials 
{U„(p,<r, x)} defined by 

Un{p,q\x) = {x + p)Un_l{p,q\x)-qUn_2(p,q\x\ n>2, (1.1) 

with U0(p,q;x) = 0 and Ux(p,q;x) = l. 
Here and in the sequel the parameters p and q are arbitrary real numbers, and we denote by 

a, P the numbers such that a + fi = p and aj3-q. 
The aim of the present paper is to investigate the companion sequence of polynomials 

{PniP&x)} defined by 
K<J>,?; *) = (* + p)Vn-X{p,q\ x) - qV„_2(p,q\ x\ n > 2, (1.2) 

with V0(j>,q;x) = 2 and Vl(p9q;x) = x + p. 
The first few terms of the sequence {Vn(p,q; x)} are 

V2(p, q; x) = (p2- 2q) + 2px + x2, 
V3(J>, q\ x) = (p3- 3pq) + (3p2 - 3q)x + 3px2 + x\ 
V4(p, q; *) = (p4 - 4p2q + 2q2) + (4p3 - %pq)x + (6p2 - 4q)x2 + 4px3 + x\ 

We see by induction that there exists a sequence {d„ik(p,q)}„>i of numbers such that 
fc>0 

V„(p,q; x) = ^d^ip^x", n^l, (1.3) 
k>0 

with d k(p,q) = 0 if A: > n +1 and d^k(p,q) = lifk = n. For the sake of convenience, we define 
the sequence {dQk(p,q)} by 

4>,o(A?) = l and ^ ( p ^ O i f ^ l . (1.4) 

Notice that F0(j?, g; x) = 2 = 2<i0) 0(p, g). 
Special cases of {y„(p,q; x)} which interest us are the Lucas polynomials Ln(x) [2], the Pell-

Lucas polynomials Q„(x) [7], the second Fermat polynomial sequence 0„(x) [8], and the Cheby-
schev polynomials of the first kind Tn(x) given by 

Kn(0,-l;x) = 4(x), 
FB(0,-l;2x) = &(*), ( 1 5 ) 

Fw.(Q,2;x)^(x), 
Fw(0,l;2x) = 27;(x). 
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Another interesting case is the Morgan-Voyce recurrence ([1], [5], [9], [10]. and [11]) given 
by p = 2 and q = 1 (or a = J3 = 1). In the sequel, we shall denote by Cn(x) = Vn(2,1; x) this new 
kind of Morgan-Voyce polynomials, defined by 

C0(x) = 2, Q(x) = x + 2, and C„(x) = (x + 2)Cw_1(x) - Q_2(x), n > 2. (1.6) 

Remark 1.1: One can notice that Cn(x2) = ^(x). Actually, it is well known and readily proven 
that the sequence {Z^C*)} satisfies the recurrence relation Lln(x) = {x2 +2)L2rl_2(x)-L2n_4(x), 
where LQ{X) = 2 and /^(x) = *2 +2. The result follows by this and (1.6). 

It is clear that the sequence {Vn(p,q; 0)} is the generalized Lucas sequence defined by 

K(P,q\ 0) - pV^faq; 0)-qVn_2(p,q; 0), n > 2, 

with V0(p,q; 0) = 2 and ^ 0 , g ; 0) = p. Therefore, V„(p,q; 0) = an +(3n. By (1.3), notice that 

dn,o(P^) = K(P^O) = an+j3\ forn>h (1.8) 

More generally, our aim is to express the coefficient dn k(p,q) as a polynomial in (a, (3) and as a 
polynomial in (p,q). 

2. PRELIMINARIES 

In this section we shall gather the results about polynomials {Un(p,p; x)} (1.1) which will be 
needed in the sequel. The reader may wish to consult [1]. 

Define the sequence {c„ k (p, q)}„>0 by 

U„+1(P, ?;*) = £ cn,k(p, q)*\ (2. i) 
k>0 

where cn k (p, q) = 0, for k>n. It was shown in [ 1 ] that 
For every n > 2 and k > 1, 

^ ( A # ) = / ^ _ u ( / ? , g ) - # ^ (2.2) 

For every n > 0 and k > 0, 

i+j=n-kv y v ' 

If p2 =4q, then a- P-pl2 and (2.3) becomes 

l u t e ? ) = ( ^ + + i 1 ) ( P / 2 r * . (2.4) 

If /? = 0, then a=-0 = p,a2 = -q, and (2.3) becomes 

K^(0^) = (-l)*(7*)?*, "~2£>0, 
k«-2*-i(0,9) = 0, w-2*- lS>0. 

(2.5) 
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For every n > 0 and k > 0, 
{{n-k)l2\ 

**<P.*> = £ (-VlV^yP"-2^- (2-6) 
The generating function of the sequence {U„(p,q; x)} is given by 

f(p,q; x,t) = YsUn+xip,?, x)f = • 1 
„>o \-{x + p)t + qV 

The generating function Fk(p,q; i) of the &* column of coefficients c„ k(p,q) is given by 

1 

(2.7) 

Fk(j>,q;t) = Y,cr,+kjn = 
«>0 (l-pt + qf) 2\fc+l 

For every w > 0, we have 
[n/2] s x 

c/n + 1(p^;o)=S(- i ) rr;rW>-2 r . 

(2.8) 

(2.9) 

3. THE TRIANGLE OF COEFFICIENTS 

One can display the sequence {dnj.(j>,q)}„>0 (1.3) in a triangle, thus, 
k>0 

TABLE 3.1 

n 
0 
1 
2 
3 
4 

k 0 1 

1 0 
P 1 
/?2-2<7 2p 
p 3 - 3 W 3p2-
p4-4p2q + 2q2 4/r3-

-3? 
- 8 M 

2 3 

0 0 
0 0 
1 0 
3p 1 
dp2 - 4q Ap 

4 

0 
0 
0 
0 
1 

For instance, the triangle of coefficients of the sequence {C„(x)} (1.6) is 

TABLE 3.2 

\ k 
n ^ v 
0 
1 
2 
3 
4 
5 
6 

0 

1 
2 
2 
2 

.2 
2 
2 

1 

0 
1 
4 
9 

16 
25 
36 

2 

0 
0 
1 
6 

20 
50 

105 

3 

0 
0 
0 
1 
8 

35 
112 

4 

0 
0 
0 
0 
1 

10 
54 

5 

0 
0 
0 
0 
0 
1 

12 

6 

0 
0 
0 
0 
0 
0 
1 
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Theorem 3.1: For every n > 0 and i > 0 w e have 

1 #/„.* 
4u+i(P,£)-= k + l <%> 

Proof: One can suppose that n > 1 and it is clear by (1.2) that Vn(p,q; x) = V„(0,q;x+p). 
From this, we see that V^(p,q;x) = V}k\0,q;x + p), where the superscript in parentheses 
denotes the k^ derivative with respect to x. Thus, by Taylor's formula and (1.3), 

Notice that these equalities are valid for every value of p. Now let us differentiate the first and the 
last member of (3.1) with respect top (q being fixed) to get 

The result can be checked against Table 3.1. 

Remark 3.1: One can get the same result for the coefficient cntk(p,q) (2.1), namely, 

-^- = (k + l)cnk+l(p,q). 

Comparing the coefficients of xk in the two members of (1.3), we see by (1.2) that, for n > 2 
and k > 1, 

4 u ( A 4) = dn-l, *-lGP> 9) + Pdn-\, kiP^)~ <ldn-2, kiPrf)* (3 2) 

which is a relation similar to (2.2). From this, one can obtain another recurrence relation. 

Theorem 3.2: For every n > 1 and k > 1, we have 

Z <3-3> 
= o ^ u ( p ^ ) + | ; / ? , , - i X i t - i ( p ^ > 

Proof: In fact, (3.3) is clear by direct computation for /?<2 [recall that d0 0(p,q) = 1 and 
that a+fi = p]. Using (3.2), we see that the end of the proof is analogous to the proof of 
Theorem 1 in [1]. 

For instance, in the case of the Morgan-Voyce polynomial Cn(x) (1.6) we have a = j3= 1, 
and (3.2) becomes (see Table 3.2) 

<t(2,1) = 4_u(2,1) +iX*+1(2,1), 
7=0 

which is the recursive definition of the DFF and DFFz triangles (see [3], [4], [5]) known to be the 
triangle of coefficients of the usual Morgan-Voyce polynomials. 
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4. DETERMINATION OF dnjk(p,q) AS A POLYNOMIAL IN (a, fi) 
The determination of dn^k(p,q) will proceed easily from the following lemmas. The first of 

these is a well-known result on second-order recurring sequences that can be proven by induction 
using (1.1) and (1.2). 

Lemma 4.1: For every n > 1, we have 

K(P>V> x) = Un+l(p,q; x)-qU„_l(p,q; x). (4.1) 

Lemma 4.2: For every n > 0, we have 

V;{p,q-x) = nUn(p,q-x), (4.2) 

where the prime represents the first derivative w.r.t. x. 
Proof: By (1.1) and (1.2), the result is clear if n = 0 or n = 1. Assuming the result is true for 

n > 1, we obtain by (1.2), 
^'+i(A q\ x) = (x + p)V£p, q\ x) - qVUiP, q\ x) + V„(j>, q\ x) 

= n[(x +.p)Un(p,q\ x) - qUn_x{p, q; x)] + Vn(p,q\ x) + qUn_x{p, q\ x) 

= nUn+i(P> <1\x) + Un+i(P> q;x) by (1.1) and (4.1), 

= (n + l)Un+l(j>,q;x). 

This concludes the proof of Lemma 4.2. 

Lemma 4.3: For every n > 1 and k > 1, we have 

dn,k(P^=JCn-lk-l(P^)' ( 4 3 ) 

Proof: Comparing the coefficients of xk~l in the two members of (4.2) we see by (1.3) and 
(2.1) that 

K u ( A ? ) = ncn-ik-i(P,ql n>l,k>\. 

Lemma 4.3 and (2.3) yield 

Theorem 4.1: For every n > 1 and k > 1, we have 

<»<™)=fjJ*n1X^71>v''- (44) 

Remark 4.1: Recall from (1.8) that dn0(p,q) = an+j3n (for n > 0), an expression which can be 
compared with (4.4). 

Let us examine two particular cases. 
(i) Firstly, supposing that p2 =4q (or a = /3 = p/2), then by (2.4) we see that equation 

(4.3) becomes 
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V J (4.5) 
2* (n + kXp/2y-k 

n + k\ 2k 

Notice that this last expression is again valid if k = 0, since dn Q(p, q) = a" + /3n = 2{pl2)n. We 
also see that dn x{p,q) = n2(p/2)n~l (see Table 3.2, wherep = 2). For instance, the decomposi-
tion of the polynomial Cn(x) (1.6) is given by 

QW = 2 + lf("2
+/_iy,for^l, 

hn + Alk ) 
(ii) Secondly, supposing that p = 0, we have a = -ft, q- -a2, and by (2.5) we see that 

equation (4.3) becomes, for n > 1, 

= ^(-\)f-k
k)qk,torn-2k>l. 

(4.6) 

Notice that the last member is again defined for n-2k = 0 (k > 1) with value 2(-l)kqk. Now, by 
Remark 4.1, we get that 

<W°> q) = a2k +ft2k = 2(-l)V, for * > 1. 
We deduce from these remarks that (4.6) is again true if n = 2k (k>l). On the other hand, we 
see by (2.5) that equation (4.3) becomes 

<*-2*-i(0,?) = 0, forw-2*-l2>l. (4.7) 

Now by Remark 4.1 we have 

4*+1,o(°, q) = ccu+l +ft2M = 0, for k > 0. 

We deduce from these remarks that (4.7) is again true if n- Ik -1 = 0 (k >0). Now, by (1.3), 

W * x) = 1^,(0, q)xk = I<„_,(0, ̂ x-* 
fc=0 k=0 

[n't] 

Thus, by (4.6) and (4.7) we get 
[nil] , , x 

^(0,^;x)= X ( - l ) * ^ d " l ^ W * x - 2 * , for»>l . (4.8) 

If p = 0 and 9 = - 1 , we obtain the known decomposition of Lucas polynomials Ln(x) and of Pell-
Lucas polynomials Q„(x) = Ln(2x) (see [7]), namely, 
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ln/2] ™ / 7 
L—J n (n-k «x)-z^v>^.«»«-fc=0' 

The reader can also obtain similar formulas for the Chebyschev polynomials of the first kind 
(p = 0, q = 1), and for the second Fermat polynomial sequence (p = 0, q = 2). 

5. DETERMINATION OF rf^(j?9 f) AS A POLYNOMIAL IN (jp, g) 

Theorem 5.1: For every w > 1 and A: > 0, we have 

^.^^^""l^-^^/X"^)^"-2^- (5-1) 
Proof: By (3.1) we know that 

and by (4.8) one can express the right member as 

^ n-r\ r ) k\ 

This completes the proof of Theorem 5.1. 

Remark 5.1: lfk = 0, we get by (1.8) the known Waring formula, namely, 

a" + fi" = E H ) r — V \ a p n a + PT2\ forit*l. 
r=o n r\ J 

6. GENERATING FUNCTIONS 

Define the generating function of the sequence {V„(p,q; x)} by 

g(p,q;x,t) = V0{p,q;x)/2+YJVn(p,q;x)t". (6.1) 

For brevity, we put g(p,q; x,t) = g(x, t) and V„(p,q; x) = Vn(x). By (6.1) and (1.2) we get, since 
V0(x) = 2 and Vx(x) = x + p, 

g(x, t) = 1 + ( X + P ) / + (x + p)tJJVn-l(^n'1 -qt2JVn_2{x)tn-2 

n>2 n>2 

= l + (x + p)t + (x + p)t[g(x, 0 ~ 1] - qt2[g(x91) +1], 

and from this we deduce easily that 

v(x. t\ -
l-(x + p)t + qt 

^o=, / , qi. .2- (6-2> 
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Let us define now the generating function of the k^ column of the triangle dn k(p, q) in Table 3.1 
by 

Gk{p,q; t) = 2X+*;jfc(A q)f, k > 0. (6.3) 

From (6.2), one can obtain a closed expression for the function Gk, namely, 

Theorem 6.1: For every k > 0, we have 

<«»«%-J,;vy- (M) 

Proof: For brevity, we omit parameters/? and q in expressions for g(p,q; x,t), Vn(p,q;x), 
dnk(p, q), and Gk(p,q; t). If k = 0, we have by (6.3), (1.3), and (1.4) 

= g(0,t) = -^-I,by(6.2). 
l-pt + qr 

Assuming now that k > 1, (6.1) and (6.2) yield 

since J ,̂(x) is a polynomial of degree w 
Pi 

obtain 

y(k) (Q) 

Put x = 0 in the last formula and recall that dn+Kk = n+^ by (1.3) and Taylor's formula, to 

(i-pt?qty«=%0
d"+k-kf=Gk(t)-

Hence, the theorem. 

Formulas (6.2) and (6.4) can be compared with (2.7) and (2.8). 

7. RISING DIAGONAL FUNCTIONS 

Define the rising diagonal functions Un(p,q; x) of the sequence {dnk(p, q)} by 
n [n/2] 

n„(A?;*) = Y<dn-k,k(P,4)xk = Td«-k,k(P,?)**, n>\. (7.1) 
k=0 k=0 

From Table 3.1, notice that 
n i (*) = A n2(x) = (p2 - 2q) + x, and n3(x) = (p3 - 3pq) + 2/?x, (7.2) 

where, for brevity, we put ITw(x) for Un(p,q;x). 

Theorem 7.1: For every n > 3, we have 

nw(x) = pll^ix) + (x - <7)nw_2(x). (7.3) 
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Proof: By (7.2), the statement holds for n = 3. Supposing the result is true for n > 3, we get 
by (7.1), 

l(«+l)/2] 

n w + 1 ( x ) = a w + l j 0 H - 2^ ^n+l-k,kX • 
k=l 

Recall from (1.2) and (1.8) that dn+l 0 = F„+1(0) = pdn0-qdn_l0 and notice that « + l - A: >n + l-
[(n +1) / 2] > 2, since w > 3. By these remarks and (3.2), one can see that 

l(n+l)/2) 
^n+i(x) = pdn,Q-qdn_li0+ X (dn-k,k-i+pdn-k,k-qdn_l_k^k)xk 

k=l 
[(n+l)/2] K»+l)/2] K»+l)/2]-l 

fc=0 fc=0 fc=0 

= pIIn(x) + (x-q)Un_l(xl 

since [(w +1) / 2] - 1 = [(n -1) / 2]. Hence, the theorem. 

Corollary 7.1: For every n > 1, we have 

n„(A9;x) = ^ i C A ? - x> °) " ? ^a-ifo0 - *> 0)• (7.4) 

Proof: By (1.1) the sequence {Un(p,q-x; 0)} satisfies the recurrence (7.3) with 

U0(p,q-x; 0) = 0, Ux(p,q-x; 0) = 1, U2(p,q-x; 0) = p, U3(p,q-x; 0) = (p2 - 9 ) + x. 

From this and (7.2), it is readily verified that (7.4) holds for n = 1 and n = 2, and the conclusion 
follows since the two members of (7.4) satisfy recurrence (7.3). 

Corollary 7.2: For every n > 1, we have 

Proof: From (2.9), we get that 

[w/2]/ \ 
r=(A ' 

and the result follows by this and Corollary 7.1. 
Let us examine two particular cases. 
(!) Ifx = g,thenby(7.1) 

[n/2] 
n„(p,*;*)= tidn_k9k(p,qrf=Pr2{pl-q), for/i2>2. 

fc=0 
For instance, if/? = 2 and # = 1 [Morgan-Voyce polynomial C„(x) (1.6)], we get 

[n/2] 

I 
k=0 

YJd„-k>k(2,l) = 3-2-2,n>2. 
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(ii) If/? = 0, then 

m 

k=0 

For instance, if/? = 0 and q - 1 (Chebyschev polynomials of the first kind), or if/? = 0 and q = 2 
(second Fermat polynomials), this identity, with slightly different notations, was noticed by 
Horadam [8]. 

8. ORTHOGONALITY OF THE SEQUENCE {Vn(p,q; x)} 

In this section we shall suppose that q > 0. Consider the sequence {Wn(p, q; x)} defined by 

where Tn(x) is the »* Chebyschev polynomial of the first kind. Notice that 

(W0(p,q;x) = 2, 
[W1(p,q;x) = x+p. 

The recurrence relation of Chebyschev polynomials yields, for n > 2, 
~( . \ ( 

(8.1) 

(8.2) 

Wn{p,q\x) = 2q nil x+p x + p T x+p 

= (x+p) 2q^TnJ x+p 2q™T„_, x+p ' 
2jq 

(8.3) 

= (x + PWn-i(P,<H x)-qW„_2{p,q; x). 

From (8.2) and (8.3), we get that 

W„(P,q; x) = V„(p,q; x), for n > 0. (8.4) 

Recalling that the sequence {Tn(x)} is orthogonal over [-1, + !] with respect to the weight 
(l-x2)~1/2, we deduce from this that the sequence {Vn(p,q;x)} is orthogonal over \-p~2^q, 
-p + 2^fq] with respect to the weight w(x) = (~x2 - 2px - A)"1/2, where A = p2 -4q. The proof 
is similar to that in [1], Section 7. 

• If 0) - cos t (0 < / < n), it is well known that Tn(co) = cos nt. Thus, by (8 J ) and (8.4) we have 

Vn(p,q,~p + 2co^) = 2qn,2Tn(o)) = 2qn'2 cos nt. 

Hence, we see that the roots of Vn(p,q; x) are given by 

xk = -p + 2^co^(2k^jn>l;k 

For instance, the roots of the Morgan-Voyce polynomial Cn{x) (1.6) are 

» , = - 2 + 2co{ettO£] = - 4 s i n ^ P ^ i ) £ ] , i = o,...,(„-l). 
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By Remark 1.1 we know that Cn(x2) = Z ^ x ) . Thus, the roots of /^ (x) are given by (see [6]) 

4 = ̂ s m ( f i * ^ ) * = 0,...,(„-l), 

where i = V^T. On the other hand, the roots of the second Fermat polynomial 0n(x) = K„(0,2; x) 
are 

x ^ 2 V 2 c o ( ^ ^ ] , ^ 0 , . . . , ( , - l ) . 

9. CONCLUDING REMARK 

In a future paper we shall investigate the differential properties of the sequences {U„(p,q; x)} 
md{Vn(p,q;x)}. 
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