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INTRODUCTION 

Let us call a sequence {Tn} (n > 0) an "wP1 -order sequence" if {Tn} (n > 0) satisfies an nfi-
order linear recurrence relation with constant integer coefficients. (We allow constant terms to 
appear in our recurrence relations.) From now on we shall generally write simply {Tn} rather than 
{Tn} (n>0). It is well known ([2], [3]) that if {Tn} is a second-order sequence then the sequence 
of squares {T^} is a third-order sequence. (It is also easy to show this directly.) It would be of 
interest to be able to describe all second-order sequences {Tn} such that {T2} is a second-order 
sequence. 

In this note we do this for certain homogeneous sequences {TJ. That is, we assume that 
{Tn} satisfies a recurrence of the form T0 = a, Tx = b, Tn+l - cTn-dT„_l9 n>\, where a,b,c^ 0, 
d ^ 0 are integers, ab^O, and x2 - ex + d - 0 has distinct roots. It then turns out that {T2} satis-
fies a second-order linear recurrence (which we describe in Theorem 6) if and only ifd=l. 

As an illustration of this, consider the sequence 1, 2, 7, 26, 97, 362, ... which satisfies the 
second-order recurrence B0 = l,Bx= 2, Bn+l = 4Bri-Bn_1, n>l. The sequence of squares I2,22, 
72,262, 972, 3622, ... satisfies the second-order recurrence S0 = l,Sx = 4, Sn+2 = 14^+1 -Sn-6. 

We also consider second-order sequences {TJ such that a slight perturbation of the sequence 
of squares {T2} is a second-order sequence. For example, the sequence 1, 1, 3, 7, 17, 41, 99, ... 
satisfies the second-order recurrence B0 = BX = 1, Bn+2 = 2Bn+l+Bn, and the "perturbed" sequence 
of squares I2,12 + 1,32, 72 + 1,172,412-f 1,992, ... satisfies the second-order recurrence SQ-\ 
Sx = 2, Sn+2 = 6Sn+l~Sn-2. 

We begin with some special cases using elementary techniques. Then, in the last section, we 
handle the general case using an old result of E. S. Selmer [3] which states: if Tn+l = ATn+BTn_l9 

n>\, and x2-Ax-B = (x-a)(x-0),a*fi, then T2
+l = CT2+DT2_l+ET2_2,n>2, where 

x3 -Cx2 - Dx- E = (x- a2)(x- /?2)(x- afi). 

MAIN RESULTS 

We begin with some special cases for which we will use the following Lemma. 

Lemma: Let p>4 be any integer, let S = ^ + V f - 1 ' a n d l e t Sn = (s"+~0'» n^°- i11^11 

these numbers iŜ  satisfy the following identities. 
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(a) ¥orz\lO<m<n,(Sn-2)(Sm-2) = Sn+m + S„_m-4. 
[In particular, (Sn - 2 ) 2 = S2n, so that S2n is always a perfect square.] 

(b) For all 0 < m < n, m = n (mod 2), SnSm = (S(n+m)/2 + S(n_m)l2 - 4)2. 

[In particular, Sn+lcS„_k = (S„ + Sk-4)2 and pS2n+l = S^S2n¥l = (S„ + Sn+l~4)2, so that S2n+l is 
always a perfect square provided/? is a perfect square.] 

(c) For all 0 < m < n, m = n (mod 2), (S„ - 4)(Sm - 4) = {S(n+m)/2 - S(„_m)/2f. 

[In particular, (p - 4)(S2n+2 - 4) = (Sl - 4)(S2n+l - 4) - (Sn+l - S„f, so that S2n+l - 4 is always 
a perfect square provided p-4 is a perfect square.] 

09 ^ + 2 = 0 7 - 2 ) ^ + 1 - ^ - 2 ( ^ - 4 ) ^ > 0 . 

Proof: We prove part (d) in detail. The proofs of parts (a), (b), and (c) are very similar, and 
are omitted. 

Note that j = ̂ Ji~ ^ / f - 1 , so that (S + j)2=p. Then 

PSn+l = \ S + -^\ Sn+l = S + ±)(s»+i+
 l 

•n+1 <?"+2+-i)+lV+4 s?«+2 S" 

- $n+2 +S„+2\ 

~ $n+2 +S„+2\ 

s^+ _L_+s
2 +X s?2w+2 

sn+1+ l 
sn+l)-2 + [S + - \ - 2 

= Sn+2 + S„±2Sn+l + 2(p-4), 

that is, Sn+2 = (p-2)S„+l-S„-2(p-4),n>Q. 

Theorem 1: Let d > 3 be an integer. Define the sequence {B„} (n > 0) by B0 = 2,BX= d, Bn+2 = 
dBn+l-Bn, « > 0 . Then the sequence of squares {B2}(n>0) satisfies the second-order recur-
rence 

B2
+2 = (d2-2)B2

+l-B2-2(d2-4),n>0. 

Proof: Solving the recurrence BQ = 2, Bx = d,Bn+2 = dBn+l - Bn in the usual way gives 

Let us now simplify the notation by setting Sn = B2,n>0. Then S„ = (£" +^r) , « ^ 0 , and by 
part (d) of the Lemma (with p = d2), Sn+2 = (d2 - 2)S„+1 -S„- 2(d2 - 4), n > 0. 
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Now we give a second-order sequence whose squares, when slightly perturbed, form a 
second-order sequence. 

Theorem 2: Let d > 1 be an integer. Define the sequence {C„} (n > 0) by C0 = 2, Q = d, Cn+2 -
dCn+l + Cn,n>0. Let S2n = C2„,S2n+1 = C2

n+1 + 4, n>0. Then 

Sn+2 = (d2+2)Sn+l-Sn-2d2, n>0. 

Proof: Solving the recurrence C0 = 2, Cx - d, Cn+2 = dCn+l + Cn (n> 0) in the usual way gives 

n m MY u x d2 i d2 l d2 i \d2 
Q ^ ^ - J , w h e r e ^ ^ T - M ^ T , - = ̂  + 1 - ^ . 

Then S2n = C\n = (S2n + ̂ ) 2 , S2rl+l = C2
2n+l+4 = (S2"+l-f-^-)2, n>0. 

Since (8 + ^ ) 2 = d2 +4 , we obtain 
\n2 

(^+4)S„+1 = 1 V cn+l . 1 «+4 r + ^ A <y 77+1 

and the calculations used in the proof of part (d) of the Lemma now give 

Sn+2=(d2+2)$n+l-8n-2d2,n>0. 

Corollary 1: Let S2n = I^n,S2n+l = Z^w+1+4, ^ > 0 , where {!>„} is the Lucas sequence. Then 
*S/i+2 = 3$n+i ~Sn-2. 

Proof: This is the case d = 1 of Theorem 2. 

Corollary 2: Let ZJ„ = i^2 + y , T2n+l = F2n+l, n > 0, where {i^} is the Fibonacci sequence. Then 
T„+2 = 3T„+1-T„-2,n>0. 

Proof: This follows from Corollary 1 and the identity 5F* = t}„ - 4 ( - l ) " (see [1], p. 56). 

If we now write 8 = -Js--Js-l, S„ = \(Sn +-^r) , n > 0, we obtain, just as in the Lemma, 

S0 = l,Sx = s, S„+2 = 4(s-2)S„+l -S„-2(s-l),n>0. 

The following two results can now be proved in essentially the same way as Theorems 1 and 
2. 
Theorem 3: Let d > 2 be an integer. Define the sequence {Bn} (n > 0) by B0 = l,Bx = d, Bn+2 -
2dBn+1-Bn, n>G. Then the sequence of squares {B2} (n > 0) satisfies the second-order recur-
rence B2

+2 = (4d2-2)B2
+l-B2-2(d2-ll n>0. 

Theorem 4: Let d > 1 be an integer. Define the sequence {Cn} (n > 0) by C0 = 1, Q = d, Cn+2 -
2dCn+l + Cn, n>0. Assume S2n = C2

2n,S2n+l = C2
2n+l, n>0, then S„+2 = (4D2+2)Sn+1-S„-2d2, 

n>0. 

We now turn to the more general homogeneous case. 
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Theorem 5: Let a, b, c * 0, d * 0 be integers, with ab * 0 and c2*4d. Let B0 = a,Bx = 6, 
Bn+l = cBn-dB„_u n>\. Then B2

n+l = (c2-2d)B2-d2B2_x + 2{b2 + a2d-abc)d\ n>\, 

Proof: Let a, /? be the roots of x2 - ex+J = 0. Then a, /? = £(c ± ̂ c2-4d\ a*±]3, 
®2, /?2 = i (^2 - 2rf ± c^c2-4d\ afi = d. Also a2*]32*d, since c * 0, rf * 0, c2 * 4rf. 

According to the result of Selmer stated in the Introduction, there are constants A, B, C such 
that B2 = Aa2n+Bfi2n + Cdn, n>0. 

Solvingthe system 

L2=B2 = A + B + C 
lb2 = B2 = Aa2+Bf + Cd 
\(hc-ad)2 = B2 = Aa4 + B/34 + Cd2 

for C gives 
r_ 2(b2+a2d-abc) 

^ 4d-c2 

Using (c2 -2d)a2n -d2a2n~2 = a2n+2 and (c2 - 2d)j52n - d2p2n~2 = fi2n+2 gives 

(c2 - 2^)52 - rf252_j + edn = A a2"+2 + £/?2w+2 + C[(c2 -2d)dn - dn+l] + edn. 

Now choosing e so that C[(c2 -2d)d" -dn+l] + ed" = Cdn+l [namely, e = C(4d-c2) = 2(b2 + 
a2J ~ afic) ] finally gives 

(c2 - 2d)B2 - d2B2
n_x + edn = A a2n+2 + Bfn+2 + Cdn+l = B2

+l, 

which completes the proof. 

Remark: The result of Theorem 5 appears in [4]. 

Applying Theorem 5 to the question raised in the Introduction, we immediately get the fol-
lowing result. 

Theorem 6: Let a, h, c * 0, d * 0 be integers, with ab & 0 and c2 * 4d. Let B0 = a,Bt = h, Bn+l = 
cBn~dBn_l, n>\. Then the sequence of squares {B2}(n>0) satisfies a. second-order linear 
recurrence (with constant coefficients) if and only if d = 1, in which case 

Bl, = (c2 -2)Bl - Bl1 + 2(b2
 +a2-ahc\ n > 1. 

Our final result is the general version of Theorem 2, in which we consider a perturbation of 
the sequence of squares. 

Theorem 7: Let a, b, c * o? d * Q be integers, with ab * Q and c2 * 4d, such that e = 4{a +^c~b) 

is an integer. Define the sequence {BJ (n> 0) by BQ -a,Bx = b,Bn+l = cBn +Bn_l, n>\. Let 
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Sin - Bin* $in+\ - ^L+i + e> ^ ^ 0- Then {Sn} (n > 0) satisfies the second-order recurrence 

Sn+l=(c2 +2)Sn-Sn„1+2e + 2(h2-a2-abc\ n>\. 

Proof: This is a direct application of Theorem 5 with d = - 1 , according to which 

B2
+l= (c2^2)B2-B2_l+2(b2-a-abc)(-iy. 
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