SQUARES OF SECOND-ORDER LINEAR RECURRENCE SEQUENCES

Tom C. Brown
Department of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C., Canada V5A1S6
tbrown@sfu.ca
Peter Jau-shyong Shiue
Department of Mathematical Sciences, University of Nevada, Las Vegas, NV 89154-4020
shiue@nevada.edu
(Submitted February 1994)

INTRODUCTION

Let us call a sequence $\left\{T_{n}\right\}(n \geq 0)$ an " $m^{\text {th }}$-order sequence" if $\left\{T_{n}\right\}(n \geq 0)$ satisfies an $m^{\text {th }}-$ order linear recurrence relation with constant integer coefficients. (We allow constant terms to appear in our recurrence relations.) From now on we shall generally write simply $\left\{T_{n}\right\}$ rather than $\left\{T_{n}\right\}(n \geq 0)$. It is well known ([2], [3]) that if $\left\{T_{n}\right\}$ is a second-order sequence then the sequence of squares $\left\{T_{n}^{2}\right\}$ is a third-order sequence. (It is also easy to show this directly.) It would be of interest to be able to describe all second-order sequences $\left\{T_{n}\right\}$ such that $\left\{T_{n}^{2}\right\}$ is a second-order sequence.

In this note we do this for certain homogeneous sequences $\left\{T_{n}\right\}$. That is, we assume that $\left\{T_{n}\right\}$ satisfies a recurrence of the form $T_{0}=a, T_{1}=b, T_{n+1}=c T_{n}-d T_{n-1}, n \geq 1$, where $a, b, c \neq 0$, $d \neq 0$ are integers, $a b \neq 0$, and $x^{2}-c x+d=0$ has distinct roots. It then turns out that $\left\{T_{n}^{2}\right\}$ satisfies a second-order linear recurrence (which we describe in Theorem 6) if and only if $d=1$.

As an illustration of this, consider the sequence $1,2,7,26,97,362, \ldots$ which satisfies the second-order recurrence $B_{0}=1, B_{1}=2, B_{n+1}=4 B_{n}-B_{n-1}, n \geq 1$. The sequence of squares $1^{2}, 2^{2}$, $7^{2}, 26^{2}, 97^{2}, 362^{2}, \ldots$ satisfies the second-order recurrence $S_{0}=1, S_{1}=4, S_{n+2}=14 S_{n+1}-S_{n}-6$.

We also consider second-order sequences $\left\{T_{n}\right\}$ such that a slight perturbation of the sequence of squares $\left\{T_{n}^{2}\right\}$ is a second-order sequence. For example, the sequence $1,1,3,7,17,41,99, \ldots$ satisfies the second-order recurrence $B_{0}=B_{1}=1, B_{n+2}=2 B_{n+1}+B_{n}$, and the "perturbed" sequence of squares $1^{2}, 1^{2}+1,3^{2}, 7^{2}+1,17^{2}, 41^{2}+1,99^{2}, \ldots$ satisfies the second-order recurrence $S_{0}=1$, $S_{1}=2, S_{n+2}=6 S_{n+1}-S_{n}-2$.

We begin with some special cases using elementary techniques. Then, in the last section, we handle the general case using an old result of E . S. Selmer [3] which states: if $T_{n+1}=A T_{n}+B T_{n-1}$, $n \geq 1$, and $x^{2}-A x-B=(x-\alpha)(x-\beta), \alpha \neq \beta$, then $T_{n+1}^{2}=C T_{n}^{2}+D T_{n-1}^{2}+E T_{n-2}^{2}, n \geq 2$, where $x^{3}-C x^{2}-D x-E=\left(x-\alpha^{2}\right)\left(x-\beta^{2}\right)(x-\alpha \beta)$.

MAIN RESULTS

We begin with some special cases for which we will use the following Lemma.
Lemma: Let $p \geq 4$ be any integer, let $\delta=\sqrt{\frac{p}{4}}+\sqrt{\frac{p}{4}-1}$, and let $S_{n}=\left(\delta^{n}+\frac{1}{\delta^{n}}\right)^{2}, n \geq 0$. Then these numbers S_{n} satisfy the following identities.
(a) For all $0 \leq m \leq n,\left(S_{n}-2\right)\left(S_{m}-2\right)=S_{n+m}+S_{n-m}-4$.
[In particular, $\left(S_{n}-2\right)^{2}=S_{2 n}$, so that $S_{2 n}$ is always a perfect square.]
(b) For all $0 \leq m \leq n, m \equiv n(\bmod 2), S_{n} S_{m}=\left(S_{(n+m) / 2}+S_{(n-m) / 2}-4\right)^{2}$.
[In particular, $S_{n+k} S_{n-k}=\left(S_{n}+S_{k}-4\right)^{2}$ and $p S_{2 n+1}=S_{1} S_{2 n+1}=\left(S_{n}+S_{n+1}-4\right)^{2}$, so that $S_{2 n+1}$ is always a perfect square provided p is a perfect square.]
(c) For all $0 \leq m \leq n, m \equiv n(\bmod 2),\left(S_{n}-4\right)\left(S_{m}-4\right)=\left(S_{(n+m) / 2}-S_{(n-m) / 2}\right)^{2}$.
[In particular, $(p-4)\left(S_{2 n+2}-4\right)=\left(S_{1}-4\right)\left(S_{2 n+1}-4\right)=\left(S_{n+1}-S_{n}\right)^{2}$, so that $S_{2 n+1}-4$ is always a perfect square provided $p-4$ is a perfect square.]
(d) $S_{n+2}=(p-2) S_{n+1}-S_{n}-2(p-4), n \geq 0$.

Proof: We prove part (d) in detail. The proofs of parts (a), (b), and (c) are very similar, and are omitted.

Note that $\frac{1}{\delta}=\sqrt{\frac{p}{4}}-\sqrt{\frac{p}{4}-1}$, so that $\left(\delta+\frac{1}{\delta}\right)^{2}=p$. Then

$$
\begin{aligned}
p S_{n+1}=\left(\delta+\frac{1}{\delta}\right)^{2} S_{n+1} & =\left[\left(\delta+\frac{1}{d}\right)\left(\delta^{n+1}+\frac{1}{\delta^{n+1}}\right)\right]^{2}=\left[\left(\delta^{n+2}+\frac{1}{\delta^{n+2}}\right)+\left(\delta^{n}+\frac{1}{\delta^{n}}\right)\right]^{2} \\
& =S_{n+2}+S_{n}+2\left[\delta^{2 n+2}+\frac{1}{\delta^{2 n+2}}+\delta^{2}+\frac{1}{\delta^{2}}\right] \\
& =S_{n+2}+S_{n}+2\left[\left(\delta^{n+1}+\frac{1}{\delta^{n+1}}\right)^{2}-2+\left(\delta+\frac{1}{\delta}\right)^{2}-2\right] \\
& =S_{n+2}+S_{n}+2 S_{n+1}+2(p-4),
\end{aligned}
$$

that is, $S_{n+2}=(p-2) S_{n+1}-S_{n}-2(p-4), n \geq 0$.
Theorem 1: Let $d \geq 3$ be an integer. Define the sequence $\left\{B_{n}\right\}(n \geq 0)$ by $B_{0}=2, B_{1}=d, B_{n+2}=$ $d B_{n+1}-B_{n}, n \geq 0$. Then the sequence of squares $\left\{B_{n}^{2}\right\}(n \geq 0)$ satisfies the second-order recurrence

$$
B_{n+2}^{2}=\left(d^{2}-2\right) B_{n+1}^{2}-B_{n}^{2}-2\left(d^{2}-4\right), n \geq 0 .
$$

Proof: Solving the recurrence $B_{0}=2, B_{1}=d, B_{n+2}=d B_{n+1}-B_{n}$ in the usual way gives

$$
B_{n}=\delta^{n}+\frac{1}{\delta^{n}}, n \geq 0, \text { where } \delta=\sqrt{\frac{d^{2}}{4}}+\sqrt{\frac{d^{2}}{4}-1}, \frac{1}{\delta}=\sqrt{\frac{d^{2}}{4}}-\sqrt{\frac{d^{2}}{4}-1} .
$$

Let us now simplify the notation by setting $S_{n}=B_{n}^{2}, n \geq 0$. Then $S_{n}=\left(\delta^{n}+\frac{1}{\delta^{n}}\right)^{2}, n \geq 0$, and by part (d) of the Lemma (with $\left.p=d^{2}\right), S_{n+2}=\left(d^{2}-2\right) S_{n+1}-S_{n}-2\left(d^{2}-4\right), n \geq 0$.

Now we give a second-order sequence whose squares, when slightly perturbed, form a second-order sequence.

Theorem 2: Let $d \geq 1$ be an integer. Define the sequence $\left\{C_{n}\right\}(n \geq 0)$ by $C_{0}=2, C_{1}=d, C_{n+2}=$ $d C_{n+1}+C_{n}, n \geq 0$. Let $S_{2 n}=C_{2 n}^{2}, S_{2 n+1}=C_{2 n+1}^{2}+4, n \geq 0$. Then

$$
S_{n+2}=\left(d^{2}+2\right) S_{n+1}-S_{n}-2 d^{2}, n \geq 0
$$

Proof: Solving the recurrence $C_{0}=2, C_{1}=d, C_{n+2}=d C_{n+1}+C_{n}(n \geq 0)$ in the usual way gives

$$
C_{n}=\delta^{n}+\left(\frac{-1}{n}\right)^{n}, \text { where } \delta=\sqrt{\frac{d^{2}}{4}+1}+\sqrt{\frac{d^{2}}{4}}, \frac{1}{\delta}=\sqrt{\frac{d^{2}}{4}+1}-\sqrt{\frac{d^{2}}{4}} .
$$

Then $S_{2 n}=C_{2 n}^{2}=\left(\delta^{2 n}+\frac{1}{\delta^{2 n}}\right)^{2}, S_{2 n+1}=C_{2 n+1}^{2}+4=\left(\delta^{2 n+1}+\frac{1}{\delta^{2 n+1}}\right)^{2}, n \geq 0$.
Since $\left(\delta+\frac{1}{\delta}\right)^{2}=d^{2}+4$, we obtain

$$
\left(d^{2}+4\right) S_{n+1}=\left[\left(\delta+\frac{1}{\delta}\right)\left(\delta^{n+1}+\frac{1}{\delta^{n+1}}\right)\right]^{2},
$$

and the calculations used in the proof of part (d) of the Lemma now give

$$
S_{n+2}=\left(d^{2}+2\right) S_{n+1}-S_{n}-2 d^{2}, n \geq 0 .
$$

Corollary 1: Let $S_{2 n}=L_{2 n}^{2}, S_{2 n+1}=L_{2 n+1}^{2}+4, n \geq 0$, where $\left\{L_{n}\right\}$ is the Lucas sequence. Then $S_{n+2}=3 S_{n+1}-S_{n}-2$.

Proof: This is the case $d=1$ of Theorem 2.
Corollary 2: Let $T_{2 n}=F_{2 n}^{2}+\frac{4}{5}, T_{2 n+1}=F_{2 n+1}^{2}, n \geq 0$, where $\left\{F_{n}\right\}$ is the Fibonacci sequence. Then $T_{n+2}=3 T_{n+1}-T_{n}-2, n \geq 0$.

Proof: This follows from Corollary 1 and the identity $5 F_{n}^{2}=L_{n}^{2}-4(-1)^{n}$ (see [1], p. 56).
If we now write $\delta=\sqrt{s}-\sqrt{s-1}, S_{n}=\frac{1}{4}\left(\delta^{n}+\frac{1}{\delta^{n}}\right)^{2}, n \geq 0$, we obtain, just as in the Lemma, $S_{0}=1, S_{1}=s, S_{n+2}=4(s-2) S_{n+1}-S_{n}-2(s-1), n \geq 0$.

The following two results can now be proved in essentially the same way as Theorems 1 and 2.

Theorem 3: Let $d \geq 2$ be an integer. Define the sequence $\left\{B_{n}\right\}(n \geq 0)$ by $B_{0}=1, B_{1}=d, B_{n+2}=$ $2 d B_{n+1}-B_{n}, n \geq 0$. Then the sequence of squares $\left\{B_{n}^{2}\right\}(n \geq 0)$ satisfies the second-order recurrence $B_{n+2}^{2}=\left(4 d^{2}-2\right) B_{n+1}^{2}-B_{n}^{2}-2\left(d^{2}-1\right), n \geq 0$.

Theorem 4: Let $d \geq 1$ be an integer. Define the sequence $\left\{C_{n}\right\}(n \geq 0)$ by $C_{0}=1, C_{1}=d, C_{n+2}=$ $2 d C_{n+1}+C_{n}, n \geq 0$. Assume $S_{2 n}=C_{2 n}^{2}, S_{2 n+1}=C_{2 n+1}^{2}, n \geq 0$, then $S_{n+2}=\left(4 D^{2}+2\right) S_{n+1}-S_{n}-2 d^{2}$, $n \geq 0$.

We now turn to the more general homogeneous case.

Theorem 5: Let $a, b, c \neq 0, d \neq 0$ be integers, with $a b \neq 0$ and $c^{2} \neq 4 d$. Let $B_{0}=a, B_{1}=b$, $B_{n+1}=c B_{n}-d B_{n-1}, n \geq 1$. Then $B_{n+1}^{2}=\left(c^{2}-2 d\right) B_{n}^{2}-d^{2} B_{n-1}^{2}+2\left(b^{2}+a^{2} d-a b c\right) d^{n}, n \geq 1$.

Proof: Let α, β be the roots of $x^{2}-c x+d=0$. Then $\alpha, \beta=\frac{1}{2}\left(c \pm \sqrt{c^{2}-4 d}\right), \alpha \neq \pm \beta$, $\alpha^{2}, \beta^{2}=\frac{1}{2}\left(c^{2}-2 d \pm c \sqrt{c^{2}-4 d}\right), \alpha \beta=d$. Also $\alpha^{2} \neq \beta^{2} \neq d$, since $c \neq 0, d \neq 0, c^{2} \neq 4 d$.

According to the result of Selmer stated in the Introduction, there are constants A, B, C such that $B_{n}^{2}=A \alpha^{2 n}+B \beta^{2 n}+C d^{n}, n \geq 0$.

Solving. the system

$$
\left\{\begin{array}{l}
a^{2}=B_{0}^{2}=A+B+C \\
b^{2}=B_{1}^{2}=A \alpha^{2}+B \beta^{2}+C d \\
(b c-a d)^{2}=B_{2}^{2}=A \alpha^{4}+B \beta^{4}+C d^{2}
\end{array}\right.
$$

for C gives

$$
C=\frac{2\left(b^{2}+a^{2} d-a b c\right)}{4 d-c^{2}} .
$$

Using $\left(c^{2}-2 d\right) \alpha^{2 n}-d^{2} \alpha^{2 n-2}=\alpha^{2 n+2}$ and $\left(c^{2}-2 d\right) \beta^{2 n}-d^{2} \beta^{2 n-2}=\beta^{2 n+2}$ gives

$$
\left(c^{2}-2 d\right) B_{n}^{2}-d^{2} B_{n-1}^{2}+e d^{n}=A \alpha^{2 n+2}+B \beta^{2 n+2}+C\left[\left(c^{2}-2 d\right) d^{n}-d^{n+1}\right]+e d^{n}
$$

Now choosing e so that $C\left[\left(c^{2}-2 d\right) d^{n}-d^{n+1}\right]+e d^{n}=C d^{n+1} \quad\left[\right.$ namely, $e=C\left(4 d-c^{2}\right)=2\left(b^{2}+\right.$ $\left.a^{2} d-a b c\right)$] finally gives

$$
\left(c^{2}-2 d\right) B_{n}^{2}-d^{2} B_{n-1}^{2}+e d^{n}=A \alpha^{2 n+2}+B \beta^{2 n+2}+C d^{n+1}=B_{n+1}^{2},
$$

which completes the proof.
Remark: The result of Theorem 5 appears in [4].
Applying Theorem 5 to the question raised in the Introduction, we immediately get the following result.

Theorem 6: Let $a, b, c \neq 0, d \neq 0$ be integers, with $a b \neq 0$ and $c^{2} \neq 4 d$. Let $B_{0}=a, B_{1}=b, B_{n+1}=$ $c B_{n}-d B_{n-1}, n \geq 1$. Then the sequence of squares $\left\{B_{n}^{2}\right\}(n \geq 0)$ satisfies a second-order linear recurrence (with constant coefficients) if and only if $d=1$, in which case

$$
B_{n+1}^{2}=\left(c^{2}-2\right) B_{n}^{2}-B_{n-1}^{2}+2\left(b^{2}+a^{2}-a b c\right), n \geq 1 .
$$

Our final result is the general version of Theorem 2, in which we consider a perturbation of the sequence of squares.

Theorem 7: Let $a, b, c \neq 0, d \neq 0$ be integers, with $a b \neq 0$ and $c^{2} \neq 4 d$, such that $e=\frac{4\left(a^{2}+a b c-b^{2}\right)}{c^{2}+4}$ is an integer. Define the sequence $\left\{B_{n}\right\}(n \geq 0)$ by $B_{0}=a, B_{1}=b, B_{n+1}=c B_{n}+B_{n-1}, n \geq 1$. Let
$S_{2 n}=B_{2 n}^{2}, S_{2 n+1}=B_{2 n+1}^{2}+e, n \geq 0$. Then $\left\{S_{n}\right\}(n \geq 0)$ satisfies the second-order recurrence

$$
S_{n+1}=\left(c^{2}+2\right) S_{n}-S_{n-1}+2 e+2\left(b^{2}-a^{2}-a b c\right), n \geq 1 .
$$

Proof: This is a direct application of Theorem 5 with $d=-1$, according to which

$$
B_{n+1}^{2}=\left(c^{2}+2\right) B_{n}^{2}-B_{n-1}^{2}+2\left(b^{2}-a-a b c\right)(-1)^{n} .
$$

REFERENCES

1. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969; rpt. Santa Clara, Calif:: The Fibonacci Association, 1980.
2. A. J. van der Poorten. "A Note on Recurrence Sequences." J. and Proc., Royal Soc. of New South Wales 106 (1973):115-17.
3. E. S. Selmer. "Linear Recurrence Relations over Finite Fields." Mimeographed notes, University of Bergen, Bergen, 1966.
4. H. S. Wilf. Problem 10211. Amer. Math. Monthly 99 (1992):361.

AMS Classification Numbers: 11B37, 11B39

