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INTRODUCTION

Let us call a sequence {7,} (n>0) an "m™-order sequence" if {7} (n>0) satisfies an m™-

order linear recurrence relation with constant integer coefficients. (We allow constant terms to
appear in our recurrence relations.) From now on we shall generally write simply {7 } rather than
{T.} (n=0). It is well known ([2], [3]) that if {7} is a second-order sequence then the sequence
of squares {7} is a third-order sequence. (It is also easy to show this directly.) It would be of
interest to be able to describe all second-order sequences {7} such that {7?} is a second-order
sequence. '

In this note we do this for certain homogeneous sequences {7,}. That is, we assume that
{I,} satisfies a recurrence of the form Iy=a,7,=5,T ,=cl —dI_,,n>1, where a,b,c+0,
d # 0 are integers, ab # 0, and x* —cx +d = 0 has distinct roots. It then turns out that {T?} satis-
fies a second-order linear recurrence (which we describe in Theorem 6) if and only if d = 1.

As an illustration of this, consider the sequence 1, 2, 7, 26, 97, 362, ... which satisfies the
second-order recurrence By=1, B, =2, B,, =4B,- B,_,,n>1. The sequence of squares 1%, 2%,
72,26%, 972 362%, ... satisfies the second-order recurrence S =L.8=47S,,=14S,,,-S5,-6.

n n+l
We also consider second-order sequences {7} such that a slight perturbation of the sequence

of squares {7;,2} is a second-order sequence. For example, the sequence 1, 1, 3, 7, 17, 41, 99, ...
satisfies the second-order recurrence By = B, =1, B,,, =2B,,, + B,, and the "perturbed" sequence
of squares 1%,12+1,3%, 7% +1,17%,41* +1,99%, ... satisfies the second-order recurrence S, =1,
Sl =2, Sn+2 = 6Sn+l - Sn -2

We begin with some special cases using elementary techniques. Then, in the last section, we
handle the general case using an old result of E. S. Selmer [3] which states: if 7,,, = AT, + BT, _,,
n>1, and x*-Ax-B=(x-a)(x-f),a#f, then T4 =CT*+DT:, +ET?,,n>2, where
x*~Cx* - Dx—E = (x—a*)(x - *)(x - ap).

MAIN RESULTS

We begin with some special cases for which we will use the following Lemma.

Lemma: Let p>4 be any integer, let 5:@4—,/5——1, and let S, =(8"+4 2. n>0. Then

these numbers S, satisfy the following identities.
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(@) Forall 0sm<n, (S,-2)S,—=2)=8,,n+Sm—4.
[In particular, (S, —2)* = S,,, so that S, is always a perfect square. ]
() Forall 0<m<n, m=n (mod 2), 8,5, = (Sprmyz + Siromyz —4) -

[In particular, S,,,S, ; = (S, +S, —4)? and pS,,., = 8,8, = (S, +5,,, —4)*, so that S, ,, is
always a perfect square provided p is a perfect square.]

() Forall 0<m<n, m=n (mod 2), (S, - (S —4) = (Sirsmyz = Sermyz) -

[In particular, (p —4)(Syue —4) = (S, = DSy —4) = (S0 = 5,)%, so that S,,,, —4 is always
a perfect square provided p—4 is a perfect square.]

@ S,.,=p-2)S,,,-5,~2p-4),n>0.

Proof: We prove part (d) in detail. The proofs of parts (a), (b), and (c) are very similar, and
are omitted.

Note that 4 = \/_g—w/%— 1, so that (§+1)* = p. Then

1 ’ 1 n+l 1 ’ 2 1 S §
pSn+1= 5+g Sn+1: 5+E o +5n+1 =l +5n+2 +| & +5_7

=8 S+ 2[52"“ +y}ﬁ~2 + 5 +5—12]

1Y 1Y
=S,,+2+Sn+2[(5"”+6n+l) —2+(5+3) —2}

= Sn+2 + Sn + 2‘Sn+1 + 2(p - 4)’

thatis, S,,, = (p—2)S,,, - S, —2(p—4),n 2 0.

Theorem 1: Let d >3 be an integer. Define the sequence {B,} (n>0) by B,=2,B,=d, B,,, =

dB,,,—B,, n>0. Then the sequence of squares {B%} (n>0) satisfies the second-order recur-
rence
B, =(d*-2)B%, - B2 -2(d*-4), n>0.

Proof: Solving the recurrence By =2, B, =d, B,,, = dB,,, — B, in the usual way gives

] N U
B,=0o +y,n20,where8—‘/:+ 2 I, 5=Va 2 1.

Let us now simplify the notation by setting S, = B2, n>0. Then S, = (5" +5i,,)2, n>0, and by
part (d) of the Lemma (with p=d?), S,,, = (d*-2)S,,,- S, -2(d*-4), n20.
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Now we give a second-order sequence whose squares, when slightly perturbed, form a
second-order sequence.

Theorem 2: Let d >1 be an integer. Define the sequence {C,} (n=0) by C;=2,C, =d, C,,, =
dac,,,+C, n>0. Let S,, =C2,S,,,,=Cz,.,+4, n>0. Then

n

Sn+2 = (d2 +2)Sn+1 _Sn _2d2, n=0.

Proof: Solving the recurrence C,=2,C, =d, C,,, =dC,,, +C, (n>0) in the usual way gives

1y 2 2 2 2
C, =5”+(—’}) , where5=1,d7+l+1,i4-, §=1/%+1—1f%.

Then Sy, = C3, = (6% +55)%, Spunr = Gy +4 = (67 +555)?, n>0.

Since (& +%)* =d* +4, we obtain

2
@ +4)8,, =|[6+1) 6™ + -1
n+l1 S 5n+1 >

and the calculations used in the proof of part (d) of the Lemma now give

Sp2 = (d2 +2)8,14 -8, —261'2, n=0.

Corollary 1: Let S,,=1,, Sy = L3,4 +4, >0, where {L} is the Lucas sequence. Then
Sn+2 = 3Sn+1 - Sn -2.

Proof: This is the case d =1 of Theorem 2.

Corollary 2: Let T, = F},+%,T,,, = F},,,, n>0, where {F,} is the Fibonacci sequence. Then

B2 =304~ 1,-2,n20.

Proof: This follows from Corollary 1 and the identity SF = IZ —4(~1)" (see [1], p. 56).

If we now write § =+s —s—1,, = (" +51—,, %, n>0, we obtain, just as in the Lemma,
S=138=58,,=45-2)S,,-5,-2(s-1), n20.

The following two results can now be proved in essentially the same way as Theorems 1 and
2.
Theorem 3: Let d 22 be an integer. Define the sequence {B,} (n>0) by By=1,B,=d, B,,, =

2dB,,,—B,, n>0. Then the sequence of squares {B>} (n>0) satisfies the second-order recur-
rence B2, = (4d* -2)B%,, - B> -2(d*-1), n>0.

Theorem 4: Let d >1 be an integer. Define the sequence {C,} (n>0) by C;=1,C,=d, C,,, =
2dC,,,+C,, n=0. Assume S,,=C;,, S,,,;=Cz,,1, 120, then S,,, = (4D*+2)S,,, - S, —2d*,
nx0.

We now turn to the more general homogeneous case.
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Theorem 5: Let a,b,c#0,d#0 be integers, with ab=0 and c¢® #4d. Let By=a,B, =b,

B,.=cB,—dB,;, n>1. Then B2, =(c’ - 2d)B? —d*B> |+ 2(b* +a*d —abc)d", n>1.

Proof: Let a, B be the roots of xX*~cx+d=0. Then a, = LctVct-4d), a=+p,
a*, B =1(c*-2d tcc? ~4ad),af =d. Also a® = > #d, since c#0,d #0,c* = 4d.
According to the result of Selmer stated in the Introduction, there are constants 4, B, C such
that B2 = Aa*" + Bf*" +Cd", n>0.
Solving the system
a*=B}=A+B+C
b* =B’ = Ad* + Bf* +Cd
(bc—ad)* = B: = Aa* + Bp* + Cd*

for C gives

C= 2(6* +a*d — abc)
- 4d-c? '

Using (¢? - 2d)a? — d*a*™* = @™ and (¢ - 2d) ™" —d* 2 = B2 gives
(> —2d)B? —-d’B? | +ed" = Aa®™? + B> + C[(c* - 2d)d" —d"'] +ed".
Now choosing e so that C[(c*—2d)d" —d""]+ed" = Cd™ [namely, e=C(4d -c*)=2(b*+
a*d — abc)] finally gives
(¢*~2d)B} ~d"B}_, +ed" = Ad™* + Bf*™* + Cd™' = B,,,
which completes the proof.

Remark: The result of Theorem 5 appears in [4].

Applying Theorem 5 to the question raised in the Introduction, we immediately get the fol-
lowing result.

Theorem 6: Let a,b,c+0,d #0 be integers, with ab# 0 and ¢* #4d. Let By=a, B,=b,B,,, =
cB,-dB,_,, n21. Then the sequence of squares {B?} (n>0) satisfies a second-order linear
recurrence (with constant coefficients) if and only if d = 1, in which case

B, =(c*~2)B*- B2, +2(b* +a*-abc), n>1.
Our final result is the general version of Theorem 2, in which we consider a perturbation of
the sequence of squares.

: . 2 2
Theorem 7: Let a,b,c#0,d #0 be integers, with ab = Q and c* # 4d, such that e = i‘—(“—:z‘—'%

is an integer. Define the sequence {B,} (n>0) by By=a,B,=b,B,,,=cB,+B, |, n>1. Let
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Sy, = B2, 8301 = Bi1+e, n>0. Then {S,} (n>0) satisfies the second-order recurrence

2.

3.

4.

S, =(c*+2)S, -8, +2e+2(b*—a*—abc), n>1.
Proof: This is a direct application of Theorem 5 with d = —1, according to which
B, = (* +2)B? - B> | +2(b* —a—abc)(-1)".

n+l —
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