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An interesting property of binomial coefficients is that, for primes p > 3,

(#)=(5) @moapt 1)
fork=1,2,3.
The Fibonomial coefficients, defined as

[n] EF,_, . .F

L T 5 T Y
or, more generally,

[n] Fylipyy; - F;
= Gy - )y ) )’

where F, is the i Fibonacci number. Such expressions have been shown to possess many
properties similar to binomial coefficients. In a previous paper [5] the authors investigated
properties of Fibonomial coefficients similar to the property (1) of binomial coefficients for k£ =2.

The main results of that paper are:

[:Z] = 8(“‘””’(2) (mod p?) 2

and

5]=() @mods, ®)

where 7 is the period of the Fibonacci sequence modulo an odd prime p, r is the rank of
apparition of p (that is, F; is the first nonzero F, divisible by p), and 7= v /r is an integer. In [7]
it is shown that 7 must assume the value 1, 2, or 4. The number ¢ is defined by e=11if r =7,
e=~1if t=2r, and &* = ~1(mod p*) if 7 =4r.

Unlike the ordinary binomial coefficients, these results are not true in general for higher
powers of p. However, in some cases they can be extended to congruences modulo p*.

In order to prove these results, we will first examine some congruences involving certain
products of consecutive Fibonacci numbers. Throughout the paper, I, represents the /™ Lucas
number, and p >3 is prime.

We first consider [1;2} F,,,.,, modulo p*. From the identity 2F,,, = L F, + L, F,, we obtain
2F, . =L, F, + LF,, so that upon expanding the product and using the facts p|F, and F |F,
we have p|F,, and

mr>

r—1
2"1H st = (L + L2, 2, + L FLT »[HFk) (mod p°), @
k=1
where
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=L L, L,
T =YY% and I, = —kn
' kz=lEc 2 n;lF E,

k<n
Then, upon dividing both sides of (4) by (2" HII,3 F,
r-1

| I mr+k r-1 r-2 r-3
L, 1(L,, 1(L,,
o E(Tm) +5(—2—) E"’Z‘+Z(_2_) F.%,

ng (5)
1(L,\ tr 25 3
=25 [L +L,F,. 2 +F.%,] (modp?).

We will next work toward simplifying the right-hand side of (5), specifically we will eliminate
2, by writing it in terms of X, .
Now, because T, = X/ 2\(L, / F,), we see that

=y \)2 r—l(L 2 =N S ( )
Ezz( =M 42y Ko +23%,,
' kZﬂEc kz=:1Ec nkk1EcE. Z ?
<n

r-1 2
5=l zf_kz_l(%] ] ©)

Now Z, = 0 (mod p) [5] so that, from (6), we obtain

thus

2
anrZZ = ——Fn?r (%) (mOd p4) (7)
k=1 k

We look at T;7\(Z, / F;)* modulo p?. Clearly,

_ 2, 2 2]
2;‘(& ) _§ (L_ ) +(L,_kJ _ Zl[(LkF,-k)z +(L F)]
k=1 Fl‘c k=1 'F;c F;‘—k k=1 (F;CF;'—k)z
and, from an identity already mentioned,

Q@) = (LF o+ L 1) = (LF, ) + (L B + 2L F L F),

which implies

(L F, k)2+(L oy ) = UL F, i L, F,) (mod p?).

Then, substituting in the equality just above,

r-1 L 2 r-1 LF;._ 2+ L_F 2 r—1_2L L_F r—
ZZ(F") S| L)’ L) | SR AUE L, ) Z_k Lk (mod p)
k=1\*k k=1 (EcE—-k) k=1 (Fl‘c r—k) k=1 F

or
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-1 2 r-1
X Lk) L L, 2
—F| =-) =% (mod p?).
Iczﬂ(Ec i D Y

We now use the identity 2L, = L L, +5F,F; tonote that 2, = I, L., +5FF,_,; hence,

s Ll - 2L
RF . FF,

Thus,
r-1 r=1 r=1 ‘
_Zﬂ Lr—k — (5_ 2Lr J 1) Z
&R E, &\ RE, FkF,_k
or
r-1 2 r-1
Lk) 2L
| =5r-1)- r— (mod p?). ®)
Z:l(Fk 1;1 FF

Then, from (7) and (8), we have

F222=_Fr(r 1)+F,3, (mod p*)
E{ r-k
or
F23,=22R -1+ Fzrz_l E_ (mod p*).
I "R ERE,
However,
$(L L ) QLE  +LF, & 2R
2%, = —k+ r—k |— k— r—k r-k~ k _ r
! kgl(};;c F_; kZ_l FEF._ kzﬂ}g‘Fr_k
so that
r=1 F
M=l ©)
‘ kZﬂFkF,_k

Hence, from the last congruence,
2

3, = FA0-D+ LI, (mod pY),

r

and so, substituting into (5),

r—1
HFmr k r-1 r-3 -2 2
P e E l(Fm, L F—)z (mod p).  (10)

2 271, F,

)
e

It is known that, for p # 5, r divides either p—1 or p+1, so we will look at the two special
cases where 7 = p£1 and prove a proposition that is interesting in its own right.
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Proposition 1: Forr=p=1,

for any odd prime p.
Proof: In order to show that £, =0 (mod p?), we need only show that X, \(1/ F,F,_,)=0

(mod p) since, from (9), X, = X} A(F. /E.F._,) and p|F.. In[5], it was proved that I, =2¢
(mod p?), where ¢ was as previously defined.
Thus, L, =2£#0 (mod p), and therefore, ¥, 2(1/FF._,)=0 (mod p) if and only if
"(=2L /F,F._)=0 (mod p). We have, from (8), that
r-1 _ r=1 2
2L _ =Sr-D+ Z(é‘—] (mod p).

im Db =i\ L

We will show that, for » = p+1, the right-hand side of the above congruence is congruent to 0
modulo p. We first prove a few simple lemmas.

Lemma I: The numbers L, / F, are all incongruent modulop for k =1,...,r—1.

Proof: Assume that L, / F;, = L;/ F; (mod p) for some 1< j<k<r-1. Then L F, =L,
(mod p), and from the identity 2F,_; = F; L ; + F_ I, together with the facts F_; = (—l)f“Fj and
L, =(-1/ L,, we obtain 2F,_, = (—l)f[Fij ~F,1,]1=0 (mod p). However, this is impossible
because 1<k —j<(r—-2).

Lemma 2: (I, / F,)* #5 (mod p) for all k and all odd primes p.

Proof: Assume that (L, / F,)* =5 (mod p), then IZ = 5F? (mod p) so that 213 = I% +5F
(mod p). But, from 2L _,, = L I, +5F,F,, we have 2L,, = I; +5F? so that I; = L,, (mod p).
However, from the identity L_,, = LI, — (-1)°L,_,, we obtain L,, = Iz +2, and combining this
with IZ = L,, (mod p) we conclude that 0= 2 (mod p) for the odd prime p.

We are now in a position to complete the proof of Proposition 1. We have seen that we need
to show that —5(r — 1)+ X, 3(L, / F,)* =0 (mod p) for r=p+1. We consider the two cases
separately.

Casel. r=p+1
e8] =i -E(a] o
—5(r—1)+ k| =5p+ | = =% mod p).
k=1 E¢ k=1 Ec k=1 Ec i

But from Lemma 1 we have that, for £ =1,..., p=r—1, the numbers I, / F, are all incongruent
modulo p; thus, the set of p numbers {L, /F,:k=1,..., p} forms a complete residue system
modulo p. Then

p Lkz_p .
Z 7 =Zk =0 (modp).
%

k=1 k=1
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Case2. r=p-1
i r—lL2 p—2L2 p—2L2
—5(r—1)+z(-F£) =—5(p—2)+z(-ﬁ£) z1o+z(}&) (mod p).
k=1 k k=1 k k=1 k

Now all of the L, /F, for k=1,..., p—2 are incongruent modulo p by Lemma 1 and, from

Lemma 2, (L, / F;)* #5 (mod p) for each k. However, 5 is a quadratic residue modulo p [8], and
we have
p-2

LY _ 2
10+ (=% =>k*=0 (mod p).
k=1 Ec k=1
Thus, Proposition 1 is proved.
Since p|L,,,but p|F, and F,|F,, , an immediate consequence of Proposition 1 is the follow-

ing corollary concerning the last term in equation 10.

Corollary 1:

L r=2 1 L F2
(-E"L) E(Fmﬁz’r—]%’—)}]ls() (mod p°).

Before proving our main theorem, we need the following result about the specific Fibonomial
coefficient

modulo p3.

Lemma 3: If p>3and r = p£1, then ["*2~1] = (F1)" (mod p?), respectively.

Proof: We again deal with the two cases separately.

Casel. r=p-1
Ifr=p—1,thenrisevenand v = p—1. From (10) and Corollary 1,

]

r=1 2 2

I1%

k=1

r=1
s (—L—m—r)p_z A )M(p )= }(i‘m—’-)ﬂuzz,,, +SFE] (mod p?).

But I2, +5F% =2L,, . Furthermore, L,, =1, I, —(-D)"L, , =1 -2, so I2 +5F% =
2(I%, -2). Therefore,

p—4 p-2 -4
_l_(éru) [ L%nr +5 anr] = 2(!&) — (ﬁa) )
4\ 2 2 2

However, from L, =2&* (mod p?), we obtainZ, /2 =1 (mod p?), so L, /2 =1+ p’q for some
q. Then
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p—k
(%m) =1+ pq)"™* =1+ (p- k)p*q = 1- kp*q (mod p*),

and so
p-2 p—4
Z(L'"T) —(%"“) =2(1-2p%) ~(1-4p*g) =1 (mod p)
or
r=1
H mr+k
r— g —=l= (l)m (mOd p3) :
E,
k=1

Case2. r=p+1

If r = p+1, then 7 =2r and r is even. From (10) and Corollary 1,
r=1

gﬁjﬂs(ﬁ'ﬂ)p—iﬁ(%) ®=(5] @oar).

2 8 ™ 2
15
k=1

Now, I, =2&* (mod p?) yields L, /2=(-1)" (modp?)orL,, /2=(-1)"+ p*q for some
q. Then,

2B ] = ) (mod )
or
r=1
HF mr+k
Bl =(-1)" (mod p?).
[1%

k=1

Thus, Lemma 3 is proved.

Proposition 2: Foranyn>0andm>0, if r = p+1, then

nr+r-1 nr+r-1
Il B =&)D" [] £ (mod p?), respectively.
k=nr+1 k=nr+1

Proof: From Lemma 3,

nr+r-1

r-1 r-1
Fmr+k = Hﬁm+n)r+k = (il)m-mH-Fk (mOd p3)
k=1 k=1

k=nr+1

and
nr+r-1

H F;c _H nr+k -(+l) HF}c (mOdp3)

k=nr+1

so that
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nr+r-1

H mr+k (+ l)m+nHF1:¢

hzarel K=l = (F1)” (mod p°).
s &y HEc
k=nr+1
Recalling that
[a] - P;erZa—l)r o F;'
b) " By EY gy -+ B’

we can now prove our main theorem.
Theorem: For any prime p>3 and any a>b>0, if r = px1, then
[; Z] = (¢l)(“'b)”[ﬂ (mod p?), respectively.

Proof: Separating the factors divisible by p from those relatively prime to p, we obtain

(a-Dr+r-1 (a=b)r+r-1

B 11 B

l:ar:l ‘Farlrar— e Ea—b)f+1 — (F;rEa—l)r . Ea—b+l)r) k=(a—1)r+1 k=(a=b)r+1

br E F . F E F F G-Dr+r-1 r-1
brt br-1 1 brt (b-1)r r H Ec . HEc
ke=(b-1yr+1 k=1

By Proposition 2, the right factor above is congruent to (F1)*--- (F1)* = (F1)“*®* (mod p?)
and the left factor is [;], . Hence,

[g:] = (¢1)<“—”>b[g]r (mod p?).

Corollary: Fora>b>0,
a N
ifr=p-1
[a T] = I:b:lr p

BZ] ifr=p+1

Proof: These follow immediately from the Theorem and the facts: 7= p—-1ifr=p—-1 and
t=2(p+)ifr=p+1. If r=1r, then

-] 5]

As was shown in [5], if the modulus is only p? instead of p3, the expression [;7] can also be

written in terms of ordinary binomial coefficients. Can this be done mod p* as well? It might
also be noted that in [5] this reduction was possible because

Ly _k 5) :
7 ~ps(2 (mod p?)

pr

(mod p?).
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if p*|k. (Proposition 2 was the case s =0, but the general case is essentially the same and some-
what more useful.) The same congruence is, in general, false mod p*.

REFERENCES

H. W. Gould. "The Bracket Function and Fontené-Ward Generalized Binomial Coefficients
with Application to Fibonacci Coefficients." The Fibonacci Quarterly 7.1 (1969):23-40.

H. W. Gould. "Equal Products of Generalized Binomial Coefficients." The Fibonacci Quar-
terly 9.4 (1971):337-46.

V. E. Hoggatt, Jr. "Fibonacci Numbers and Generalized Binomial Coefficients." The Fibo-
nacci Quarterly 5.4 (1967):383-400.

S. K. Jerbic. "Fibonomial Coefficients—A Few Summation Properties." Master's Thesis,
San Jose State College, San Jose, California, 1968.

W. A. Kimball & W. A. Webb. "Congruence Properties of Fibonacci Numbers and Fibonacci
Coefficients." In Applications of Fibonacci Numbers, Vol. 5. Dordrecht: Kluwer, 1993. .
D. A. Lind. "A Determinant Involving Generalized Binomial Coefficients." 7The Fibonacci
Quarterly 9.2 (1971):113-19, 162.

R. F. Torretoo & J. A. Fuchs. "Generalized Binomial Coefficients." The Fibonacci Quar-
terly 2.3 (1964):296-302.

J. Vinson. "The Relation of the Period Modulo m to the Rank of Apparition of m in the
Fibonacci Sequence." The Fibonacci Quarterly 1.1 (1963):37-45.

AMS Classification Numbers: 11B39, 11B65, 11B50

O % o
EXE XY

1995] 297



