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1. INTRODUCTION 

The discriminator, D(J, n), is defined to be the smallest positive integer k for which the first n 
7th powers are distinct modulo k. It was introduced by Arnold, Benkoski, and McCabe [1] in 
order to determine the complexity of an algorithm they had developed. Results on the discrimina-
tor can be found in [1, 3, 4, 12, 13, 16, 17]. We show that, under certain conditions, the discri-
minator takes on values that are also assumed by the function E(n) := mm{k \n\q>{k)}. Here q> 
denotes Euler's totient. We call E the Euler minimum function. The sequence {^}^=1, with ak -
lcm(<p(l\ ...,<p(k)) is used to link the discriminator and the Euler minimum function. As an appli-
cation we show that, for several values of n and primes p, there exist unbounded sequences 
{JkYk=\ anc* {ek)lt=i9 s u ch ^at D(jk, n) = p*k for every natural number k. The prime powers p*k 

are exceptional values of the discriminator, since it is known that D(J, n) is squarefree for every 
fixed j>\ and every n large enough [4]. For example, if j> 1 andj is odd, one has, for every n 
sufficiently large, D(J,n) - mm{k >«|gcd(y, (p(k)) = 1 and k is squarefree}. In the literature so 
far only the case where y is fixed has been considered. In this paper we focus on the case where n 
is fixed. The behavior of D(j, n) turns out to be very different in these cases. (For a table of 
values of the discriminator, see [17].) 

Since we think that the Euler minimum function and the sequence {ak}™=l are of interest in 
themselves, we also prove some results on them which are possibly not related to discriminators. 

2. RESULTS ON THE EULER MINIMUM FUNCTION 

There seems to be no literature on E(n). The related set {k :n\<p(k)}, however, does occur 
in the literature. It is denoted by C„ [we will use the notation C(ri)] and occurs in a series of 
papers on the equidistribution of the integers coprime with n ("the totatives") in intervals of length 
nlk written in the 1950s [6, 7, 10, 11]. In particular, it is shown there that A(ri) = C(ri) if and 
only if n is prime, where A(n) is the set {k GN :n2 \k or there exists a/? with p = 1 (mod n) and 
p\k). A result on C(n) of a different kind (and time) is that of Dressier [5], who proved that the 
set N \ C(n) has natural density zero for every n. 

Recall that if Upj*' is the canonical prime factorization of n, then cp{n) = Tlp^^iPj -1). So, 
in particular, n\<p(n2) and, therefore, E(n)<n2, and so E(n) exists. In the proofs, we repeatedly 
use the following simple principle to show that a certain number does not equal the E(n): we 
exhibit a smaller number in the collection C(ri). We study only the case where n equals a prime 
power. 

The symbol/? is used exclusively for primes. 
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Theorem 1: Let q be a prime. Let m be the smallest squarefree number of the form Ilf=1(l + atq6i) 
with 1 + atqei prime for / = 1?..., k and Zf=1 et=n. Then 

E(q") = tmn{rn,qn+l}. 

In case E{qn) = m, we have 
k k 

Y\cii<q and J\at = <p(m) I qn . 

Remark: By Dirichlet's theorem on arithmetical progressions, m exists. 

Proof; Assume that p ^ q and p\E{qn). If p2 \E(qn), then the integer E{qn)lp is also in 
C{qn). Since this contradicts the definition of E(qn), it follows that p2 \E{qn). Since the integer 
E{qn)l p is not in C(qn), we have p = 1 (mod g). Therefore, /? = l + age for some positive inte-
gers a and e. Also, if g|£,(^w), then the integer E(qn)qe I'p, which is less than E(qn), is in 
C(qn). Put g = ordg(p(£(qrn))). Obviously, g > n. If g > n, then the integer E(qn)qe Ip, which 
is less than E(qn), is in C(qn). This contradiction shows that g = n. Up to this point we have 
shown that E(qn) is a squarefree number of the form nf=1(l + ̂ e ' ' ) with l+atqei prime for i - 1, 
..., £ and Zf=i^ = w. Clearly, E(qn)h&$ to be the smallest number of this form, that is, E(qn) = m. 
In the remaining case where E{qn) does not have a prime divisor/? with p^q,we have E(qn) = 
qn+\ It follows that E(qn) = min{w, g"+1}. In the case m<q"+\ we have <p(m) = U^a^ = 
g" nf=i af <m< qn+1 and the remaining part of the assertion follows. D 

In order to compute E(qn), the following variant of Theorem 1 is more convenient to work 
with. We denote by S(q) the set of squarefree numbers composed of only primes p satisfying 
p = l (mod q). For convenience, we define the minimum of the empty set to be oo. 

Theorem 1f: E(qn) = min{/w, qn+l}, where m = mm{s e S(q): qn divides <p(s) I qn <q}. 

For given positive integers a and d with gcd(a, d) = l, we denote by p(d, a) the smallest 
prime/? satisfying p = a (mod d) and more in general by pf(d,a), i > 2 , the Ith smallest such 
prime. We denote by a)(n) the number of distinct prime factors of n. 

Corollary 1: 
(i) The largest prime divisor of <p(E(qn)) is q. 

(ii) The smallest prime divisor of E(qn) is not less than q. 
(Hi) If q is odd, then co(E{qn)) < mm{n +1, log q I log 2}. 
(iv) E(q) = min{q2,p(q,l)}. 
(v) E(q2) = min{g3, p(q2,1), p(g, l)ftfo, 1)}. 

Theorem 1 and in particular parts (iv) and (v) of Corollary 1 show that the behavior of the 
Euler minimum function is intimately tied up with the distribution of prime numbers. Theorem 1 
gives rise to questions on the behavior of p(q, 1) and, if we delve deeper, on pt(q, 1) for / > 2. 
Corollary l(v), for example, gives rise to the following question: Is it true that infinitely often 
p(q, l)/^ (<7> 1) <P(q2> 1)? Unfortunately, problems involving p(d9d) are generally very difficult 
(see, e.g., [14, p. 217] for an overview). However, there is a guiding principle in these difficult 
matters: probabilistic reasoning. The basic assumptions made in probabilistic reasoning are that 
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the probability that n is a prime is about 1 / log n and that the events n is a prime and m is a prime 
are independent. Using probabilistic reasoning, we arrive, for example, at the conjecture that 
p(q, 1) < q2 for every sufficiently large prime q. Indeed, this conjecture was made by several 
mathematicians (see, e.g., [9] [15]). Very recently, Bach and Sorenson [2] proved that p(q, 1) < 
2(<7 log q)2, assuming the Extended Riemann Hypothesis holds true. By Corollary l(iv), the con-
jecture is equivalent to E(q) = p(q, 1) for every prime q large enough. Unconditionally, we can 
only prove the following result. 

Lemma 1: \{q < x: E{q) = p(q, 1)}| >r6 6 8 7 /log*. 

Proof: Put Aa(x,S) = \{p:a + 2<p<x, P(p-a)>xs}\, where P(n) denotes the greatest 
prime divisor function. Put 8 = .6687. Then by Theoreme 1 of Fouvry [8]. Aa(x,S)>x/\ogx, 
where the implied constant depends only on a. Let/? be a prime contributing to Aa{x,S). Put 
P{p-a)-q. Then p(q,a)<p<x<qys. Since there are at most xl~5 primes/? such that 
P(p -a) = q and q>xs (a fixed), it follows that 

\{q<x:p(q,a)<qvs}\>^fi>x5/logx. 
xl~s 

In particular, we have | {q < x: p{q, 1) < q2} | > xMS7 / log x. D 

Remark: Let a be an arbitrary fixed positive integer. The result implicit in the proof of Lemma 1 
that 

|{^<x: jp(^a)<?
1 4 9 6}|^x-6 6 8 7/logx, 

supersedes the record result of Motohashi mentioned in The Book of Prime Number Records [14, 
p. 218], who proved in 1970 that \{q < x: p(q, a) < ql637S}\ tends to infinity with x. 

The following lemma is a straightforward consequence of Theorem 1. 

Lemma 2: 
(i) E(p*)*E(qb)ifp*q. 

(ii) E(pa)*E(pb)ifa*b. 

Proof: 
(i) If E(pa) = E(qb), then P((p(E(pa))) = P(<p(E(qb))). If p*q, this is impossible by 

Corollary l( i) . 
(ii) Since, by Theorem 1, p a \<p(E(pa)) and/?* \(p(E(pb)), clearly E(pa) * E{pb) if a * b. • 

If q = 2, Theorem 1 can be improved. For j > 0 put 9^ = l + 22 - / . The primes of this form 
are called Fermat primes. Let I be the set of/ such that (3e

i is prime. Notice that 0, 1, 2, 3 , and 4 
are in /. These numbers correspond with the primes 3, 5, 17, 257 and 65537. These primes are 
the only known Fermat primes. 

Lemma 3: Let Z ; €j 2J be the representation to the base 2 of n. Then 

(I I , <= / 2?, if J is a subset of/; 

2n+1 otherwise. 
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Proof: Notice that the number m (in the notation of Theorem 1) equals mm{s e£(2): 
<p(s) = 2n]. The prime factors of m must all be Fermat primes (for a number of the form 1 + 2b to 
be prime, it is necessary that b is a power of two). On using the uniqueness of the representation 
to the base 2, it follows that m -HjGj&j if J is a subset of/ and oo otherwise. Multiplying out 
Tijej(22J +1) gives a sum of powers of 2 with unequal exponents and largest exponent n. So 
riyejS^ < 2"+1 (using the uniqueness of the representation to the base 2 again). The lemma then 
follows from Theorem 1'. • 

Example: £(231) = 4294967295. 

Corollary: If there are only finitely many Fermat primes, then E(2a) = 2a+l for every sufficiently 
large a. 

Remark: The prime 2 seems to be the only one for which such an explicit result can be derived. 
This is in agreement with the saying of H. Zassenhaus that two is the oddest of primes. 

The next lemma demonstrates that, for some odd primes, Theorem 1' can also be sharpened, 
although to a lesser extent. 

Lemma 4: E(qn) = min{g"+1, p(q\ 1)} for q = 3,7,13, and 31. E{qn) = tmn{q"+\ p{q\ 1)} if n 
is odd for q = 5 and 19. 

Proof: We only work out the case where q = 19, the other cases being similar. Notice that 
3|l + 2.19a, so l + 2.19a is not a prime. Then {s eS(19):l9n\<p(s),<p(s) <19"+1 and a)(s)>2} = 
{(l + 419a)(l + 419b):a + b = n and both 1 + 4.19* and 1 + 4.196 are prime}. Now, since n is odd, 
we can assume without loss of generality that a is even. But then 5|l + 4.19a, so this collection is 
empty. Therefore, by Theorem 1', we find that £(19") = min{19w+1, p{\9n, 1)}. D 

In the next section it is shown that primes p such that E{pn) = pn+l for infinitely many n are 
related to special values of this discriminator. Let E denote the collection of primes having this 
property. 

Lemma 5: 2 e E. 
Proof: Since F5 = 641-6700417 is composite (Euler), it follows from Lemma 3 that E(2n) = 

2n+l for every n that has 25 in its representation to the base 2. Since there are obviously infinitely 
many such n, the lemma follows. • 

Lemma 6: Let q be an odd prime. Suppose there are integers a, d, and i% such that E(gn) = 
min{#n+1, p(qn, 1)} for every n > n0 and n = a (mod d). Then q is in E. 

Proof: Let k be an arbitrary integer such that k > nQ and k = a (mod d). For every j in 
{1,..., (q-1)/2}, choose some prime divisor pj of 1 + 2jqk. Notice that gcdQ^,q) = l. Then, 
by Fermat's little theorem, py 11 + 2jqk+m{Pj~l) for every j in {1,..., (q -1) / 2}, so 1 + 2jqk+m{Pj~l) is 
composite for every m in N and j in {1,..., (q -1) / 2}. Put t = I c m ^ - 1 , . . . , p^iy2 ~ 1) • Then 
1 + 2jqk+m£d is composite for every m in N and j in {1,..., (q -1) / 2}. Since k + mid = a (mod d) 
m&k+m£d > nQ, it follows from the hypothesis of the lemma that E(qk+m£d) = qk+l+m£d for every 
m in N; therefore, q is in E. D 
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Finally, using Lemmas 4, 5, and 6, we find 

Lemma 7: {2, 3,5, 7,13,19,31} c £ . 

We conjecture that in fact every prime is in E and challenge the reader to prove this or, at 
least, to exhibit other primes in E. 

3. THE LOWEST COMMON MULTIPLE OF THE SUCCESSIVE TOTBENTS 

In this section we study the sequence {ak}^=u with ak = lcm(#>(l),..., <p(k)); in plain English, 
ak is the lowest common multiple of the first k totients. In the next paragraph it will transpire that 
this strange sequence provides a link between discriminators and the Euler minimum function. 
The purpose of this section is to give the reader some feeling for the behavior of this sequence. 

Put ck=akl ak_x for & > 2. We say k (> 2) is & jumping point if ck exceeds one. 

Lemma 8: The number k is a jumping point if and only if k = E(pr) for some prime/? and expo-
nent r>\. 

Proof: If k is a jumping point, then there is a prime/? such that p\ck. Put r = ordp((p(k)). 
Then pr \<p(f) for every t < k (otherwise p * ck), so k - E(pr). On the other hand, if k = E(pr) 
for some prime/? and exponent r, then ck > /?, so k is a jumping point. D 

Lemma 9: For k > 2, ck is a prime or equals 1. 

Proof: If ck > 1, then k = E(pr) by the previous lemma. Now/? is the only prime dividing 
ck because if another prime, say q, would divide ck, then it would follow that E(pr) = E(qa), 
where qa J <p(k). By Lemma 2(i), this is impossible. If p21 ck, then /?r_1 j #?(/) for every I < k, and 
it follows that E(pr~l) = E(pr). By Lemma 2(ii), this is impossible. D 

The following lemma gives an idea of the growth of the sequence {ak}™=i as k tends to 
infinity. A trivial lower bound for ak is given by exp(cjk) for some c> 0. To see this, note that 
II < /£ /? divides afc (since /?|#>(/?2)). On using the result Hp<x log/? ~ x of prime number theory, 
the bound is easily established. 

Lemma 10: Let 8 be an arbitrary fixed positive real number. Then 

exp(k 6687) <ak< exp((l + s)k). 

Proof: Recall that A(ri), the Von Mangoldt function, is defined by log/? if n is of the form 
/?*, and 0 otherwise. Notice that 

log(flt) < Iog(lcm(l, ...,*)) = £ A(#i) < (1 + *)* 

for every A: sufficiently large. The latter estimate follows from the well-known result 

n<x 

of prime number theory. This gives the upper bound. 
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The primes contributing to Ax{k,8) (cf. the proof of Lemma 1) yield >k5 llogk distinct 
primes not less than k5 that occur as prime factors of numbers of the form p-\ with p not 
exceeding k. The product of these primes is a divisor of ak exceeding exp(dfc^) for some c> 0 
and all k >1. • 

Remark: In case Aa(x,S)>x/logx holds for a number larger than .6687, this automatically 
gives rise to a corresponding improvement in Lemmas land 10. 

4, THE EULER MINIMUM FUNCTION AND THE DISCRIMINATOR 

For n - 1,2, and 3, the behavior of the discriminator is not very interesting; it is easy to show 
that D(j, 1) = 1, D(j, 2) = 2, D(2j -1,3) = 3, and D(2j, 3) = 6 for every j in N. From now on we 
assume that n is an arbitrary fixed integer > 4. We establish a connection between the Euler 
minimum function and discriminators. 

First, we prove a lemma ("the push-up lemma") that can be used, given an arbitrary k, to find 
a j such that D(J,ri) >k. In the proof, the following result on e(k), the maximum of the expo-
nents in the canonical prime factorization of A:, is needed. 

Lemma 11: e(k) < <p(k). 

Proof: For k = 1 there is nothing to prove. If k > 1, there is a prime p and an exponent 
e(Jfc)£l such that p*<*>|*. Then e(k) <2e(k)~l <pe{k)-\p-l) <<p{k). U 

For convenience, we call a pair of integers r, s with \<r <s<n an n-pair. When both r and 
s are coprime with k, the n-pmr (r, s) is said to be coprime with k. 

Lemma 12 ("push-up lemma"): For n>4 and arbitrary k, we have D(<p(k),ri)&k. 

Proof: It suffices to exhibit an n-pm (r, s) such that r9^ = s^fc) (mod k). We show that 
(2, 4) meets this requirement. Let / = ord2£, then 29{k) = 1 (mod k 12f). By Lemma 11 and the 
definition of e(k), it follows that / < e(k) < <p(k), so 2 ^ } = 4^(fc) (mod *). • 

We will now use the push-up lemma to prove that there is a connection between the Euler 
minimum function and discriminators. 

Theorem 2: If w>4 and p>nl2 and pa is a power of p for which E(pa)>n, and if 
pa lord a)(r I s) for every fi-pair (r, s) coprime with E(pa), then D(a a ri) = E(pa). 

Proof: Put A: = E(pa). By the push-up lemma D(ak_h ri)>k. We claim that D(ak_h n) = k. 
Put j = tfjfc_i. Notice that it suffices to show that there does not exist an n-pm (r, s) such that 
r ; = sJ (mod &). To this end, assume that such integers do exist. Since the smallest prime divisor 
of kis not less thanp by Corollary l(ii), it follows from p>nl2 that at least one of gcd(r, k) and 
gcd^, k) equals one, but then both gcd(r, k) and gcd(s, k) equal one [so the î-pair (r, s) is co-
prime with k]; thus, (r / s)J = 1 (mod A) and, therefore, j is a multiple of ordE(P

a)(r I s). Since this 
order is divisible by pa by assumption, it follows by the definition of ak_x that there is an £ < k 
[= E(pa)], so the theorem is proved. • 
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Corollary: Suppose that n, /?, and a satisfy the hypothesis of Theorem 2. Then E{pa) is in 
D(N,m)fovm'm {4,...,w}. 

Remark: In Table 1, some triples {k,E{k\nmdiX) are recorded with k of the form pa, with pa 

and wmax satisfying the hypothesis of Theorem 2. Furthermore, wmax is the smallest integer > 4 
such that pa and wmax +1 do not satisfy the hypothesis of Theorem 2. 

TABLE 1. Numerical Material Related to Theorem 2 

! k 
! 7 
1 25 
! 43 
1 61 

79 
107 
151 

E{k) 
29 
101 
173 
367 
317 
643 
907 

max 

4 
4 
12 
12 
13 
17 
25 

k 

! 13 
! 27 
1 47 
1 67 
97 
127 
163 

E(k) 
53 
81 
283 
269 
389 
509 
653 

n 
max 

6 
4 
12 
12 
16 
21 
21 

* 

17 
31 
49 
71 
101 
137 
169 

E(k) 
103 
311 
197 
569 
607 
823 
677 

n 
max 

8 
5 
5 
14 
22 
18 
9 

1 k 
1 19~~ 
1 37 
59 

1 73 
103 
139 
193 

E(k) 
191 
149 
709 
293 
619 
557 
773 

n 
max 

4 
9 
18 
16 
21 
18 
21 

If (E(k% nm&x) is a pair in the table, then E{k) <=D(N, m) for every m E {4,..., nmax}. 

The next theorem can be regarded as a special case of Theorem 2. It shows that the hypothe-
sis of Theorem 2 can be weakened at the cost of generality. 

Theorem 3: Let n > 4 and p>nhe such that 2p +1 is prime. Then D(a2 n) = 2p + l. 

Proof: Notice that {p: 2p +1 is prime, /? > 3}. = {/?: E(p) = 2p +1}. Let (r, s) be an w-pair. 
Since 2/? +1 \r - s and 2p +1 f r + s, r2 4 s2 (mod 2p +1). Therefore, /? |ord^(/?)(r / 5) for every n-
pair (r, 5) and so the result follows from Theorem 2. D 

Remark: The primes in the set {p:2p + l is prime, p>3} are called Sophie Germain primes. 
They were first considered in the study of Fermat's last theorem. 

From the results in [4], it follows that D(j, n) is squarefree for every fixed j > 2 and every n 
sufficiently large. We proceed to show that there are values of n and primes/? such that pe is in 
D(N, n) for infinitely many n. For convenience, we call these primes n-discriminator primes. 
Notice that pe with e large is far from being squarefree. So, if pe is in D(N, ri) for some large e, 
the number pe can be regarded as an exceptional value of the discriminator. 

Lemma 13: Suppose/? is odd. If a8 = l + kp (mod/?2), then apM ~lg = l + kpm (modpl+m). 

Proof: The proof is left as an exercise for the interested reader. D 

When gcd(r, p) = 1, we have rp~l = l + qr(p)p, with qr(p) an integer. This integer is called 
the Fermat quotient of/?, with base r. 

Theorem 4: If n>4,p eE,p>n/2,q2(p)£ 0(mod/?) and qr(p) £qs(p) (mod/?) for every n-
pair (r, s) coprime with/?, then/? is an ^-discriminator prime. 

Proof: By the hypothesis on/? and Lemma 13, it follows that rp"l(p~l) # spe~l(p~l) (mod/?e+1) 
for every positive integer e and for every w-pair (r, s) coprime with/?. Since p>n/2, it even 
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holds true for every w-pair (r, $). Notice that this incongruence implies pe |ord ,+1(r / s) for every 
e>\. Sincep is inE, there are infinitely many exponents/such that E(pf) = /?/+1. Then, for all 
sufficiently large of these/, there exists a j f such that D(Jf, ri) = pf+l

9 by Theorem 2. So p is an 
/i-discriminator prime. D 

Corollary: If/? is an w-discriminator prime satisfying the hypothesis of Theorem 4, p is an m-
discriiminator prime for m in {4,..., ri). 
Remark: Fix some/?. Suppose there is an n such that n and/? satisfy the hypothesis of Theorem 
4. Then define nmax to be the largest n such that nmSLX and/? satisfy the hypothesis of Theorem 4. 
Notice that /2max exists (??max < 2p). The entries in Table 2 result, after some easy computations, 
on using Theorem 4 and Lemma 4. 

TABLE 2* Numerical Material Related to Theorem 4 

1 n 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

n-Discriminator Primes 

3,7,13,19,31 
13,19,31 
13,19,31 
13,19,31 
19,31 
19,31 
19,31 1 
31 
31 
31 
31 

If/? is in the row headed «, then there are infinitely many e such that pe e D(N, ri). 

Our final theorem shows that the condition p>nll in Theorem 4 is necessary forp to be an 
^-discriminator prime. 

Theorem 5: If p<nl'2, then/? is not an ̂ -discriminator prime. 

To prove this, we need some preparatory lemmas. They give upper bounds for D(J, n) that, 
with harder work, are not too difficult to improve upon. For our purposes, the given bounds will 
do, however. 

Let /?l3 p2, /?3,... denote the sequence of rational primes and [x] the greatest integer < x. 

Lemma 14: D(J, n) < p [y>r logn/log4]+l for all positive integers/ and n. 

Proof: For n - 1 the assertion is obviously correct. So assume n > 1. Let Diffl[/, ri) denote 
the set {sJ -rJ |1 < r < s < n). If/? is a prime such that/? divides none of the members of Diff(/, n), 
then l7,...,n] are pairwise incongruent modulop and so D(j,n)<p. Since a number m has at 
most [logml log2] different prime factors, the numbers in the set Dififj, ri) contain at most 
[jn2 log nl log 4] different prime factors. Therefore, there is a prime q<p. n2lo n/lo 4]+l such that 
F,...? nj are pairwise incongruent modulo q. Thus, D(j,ri)<q<P[jn2logn/log4]+v • 
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Lemma IS: D(j, n) <n jlog(y +1). 
Proof: The proof is immediate from Lemma 14 and the estimate pn = 0(nlogri), which 

follows from the Prime Number Theorem. D 

Proof of Theorem 5: Suppose p<n/2. Now in case D(J, n) = pe for some integers j and 
e, it follows that e>j,fori£e<j, then pJ = (2p)J (mod pe). So if/? is an ̂ -discriminator prime, 
there exist infinitely many j such that D(j, n) > pJ+1. However, this contradicts Lemma 15. D 
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