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In this note we develop some properties of purely periodic infinite continued fractions. The 
parameters k9 n9 ak9 an, pn9 and qn will denote positive integers, and q0 = 0. Let 

that is, yn is the finite continued fraction whose partial quotients are the ak. (The initial term of 
yn is denoted al9 not a0.) Let 

x„=[a 1 ,a 2 ,a 3 , . . . ,a j , 

that is, xn is the corresponding purely periodic infinite continued fraction. 

Theorem 1: Let n9 xn9 yn, pn9 and qn be as above. Then 

*n = {Pn~<ln-l+4(Pn + ^n-lf ~ 4 ( - l ) " ) / 2qn. 

Proof: This follows from elementary considerations (see Hardy & Wright [1], Ch. 10). • 

Remark: S. Rabinowitz [3] has asked for a formula for [1,2,3,..., ri\. 

Theorem 2: Let n, x„, yn, pn9 and qn be as above. Let 

\imy„ = A = [al9a29a39...l 
n->oo 

Then also 
lim x„ = A. 

Proof: It suffices to show that yn - xn tends to 0 as n tends to infinity. By Theorem 1, we 
have 

yn-x„ 
1 

2q«iP«+9»-i) 
1- 1 — 

4(-l)» 
v l / 2 ^ 

(Pn+ln-l) 

As n tends to infinity, the factor ^-(p„ +qn-\) 'ls bounded from above, since pn I qn tends to A 
and qn_x I qn < 1. On the other hand, pn and qn_x tend to infinity with n, so that 

4(-iy 
,1/2 

(Pn+Qn-l) 
tends to 0. 

Thus, yn - xn tends to 0 as n tends to infinity. D 
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Corollary: Let Ik(t) be the modified Bessel function of the first kind of order fc, that is, 

A(0 = I(K02'+*/rc/+i)rc/+*+i). 

Let w„= [1,2,3,...,«]. Then 
lim w„ = 70(2)//1(2) = 1.433127427. 
«->oo 

iV^q/;- This follows from hypothesis, Theorem 2, and ([2], Th. 1). D 

Theorem 3: Let x„, yn9 and ̂ 4 be as in the hypothesis of Theorem 2. Then, for all n, we have 
X2n. < A <^2n-V 

Proof: Applying Theorem 1, we have x2n <p2n Iq2n, that is, x2n <y2n. Similarly, x2n_x > 
Pln-l / #2«- l> t h a t i s> X2n-l > ^ 2 » - l • B u t ^ 2 « < ^ < ^ 2 n - l fol" a 1 1 W > S 0 X2n < A < X2n-l for a 1 1 W- D 
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