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1. INTRODUCTION 

The problem of obtaining a linear recursion for a decimated sequence in terms of the linear 
recursion for the original finite field sequence has been studied extensively in the literature either 
from a mathematical point of view or in connection with various applications mostly having to do 
with high-speed parallel generation of linear recurring sequences. A survey of such applications, 
mainly in spread spectrum communications and cryptography, can be found in [4]. The special 
case of sequences satisfying primitive or irreducible polynomials was treated in [10], [7], and [3], 
whereas the general case was settled in [2]. Alternative approaches to the general case were 
given in [5], [6], [8], and [4]. Recently, the results from [2] have been extended to arbitrary fields 
[1] by using the results on products of linear recurring sequences from [11]. Unlike the method 
from [2], which is based on the decimation of individual sequences, the method from [1] deals 
with vector spaces of sequences. 

In this paper we develop a novel approach that enables us to determine the minimum 
generating polynomial of decimated sequences over an arbitrary field in a simple and self-con-
tained way. This is achieved starting from a new characterization of this polynomial and by using 
some facts from the general field theory, without invoking any results on product sequences. 
Some new properties of decimated sequences are also pointed out. 

2. PRELIMINARIES 

Let F be an arbitrary field, let s - {s(t)}™=0 denote a sequence over F, and let f(x) - T"=0 cxxl 

be a polynomial over F such that / (0) ^ 0. Then s is called a linear recurring sequence satisfying 
/ i f 

Xc,s(r+/) = o, r>0. (l) 
7=0 

Let LF{f) or simply L(f) denote the set of all s over F that satisfy/. If the degree of/is n, then 
L(f) is an n-dimensional vector space over F which is closed under the translate operator Ts-
{s(t + 1)}J10. For every linear recurring sequence s over F, the unique monic polynomial g over F 
of lowest degree satisfied by s is called the minimum polynomial of s and s is called a regular 
sequence of g, see [2]. The minimum polynomial of a finite set of linear recurring sequences is 
defined analogously and is equal to the least common multiple of the minimum polynomials of 
individual! sequences, see [10]. 

Given a sequence s over F and a positive integer d, the decimation of s by d, s^, is defined 
by s(d)(t) = s(td), t > 0. Analogously, given a set S of sequences over F, the decimation of S by d, 
S(d\ is defined by S(d) = {s(d) :s^S}. Besides, given a nonnegative integer r , the translate of s 
by T , 5 .̂), is defined by s(r)(?) = s(t + r), t > 0, that is, s(r) = Vs. 
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The set L(d)(f) is a vector space over F generated by the set {s$}"Z0 of decimated 
sequences obtained from the successive translates of any regular sequence s off of degree n. 
Since L^(f) is closed under the translate operator, L^(f) = L(h), where h is the minimum 
polynomial of the set {s$}n

rZl
0. Moreover, since every sequence from {$$}n

TZl
0 is a translate of a 

sequence from {s^}dZl and since the minimum polynomial of a translate divides the minimum 
polynomial of the original sequence, h is also the minimum polynomial of the set {s^}dZl

0- This 
set is important for the high-speed parallel generation of s, because s can be obtained by inter-
leaving the corresponding decimated sequences generated at d times lower speed than s. 

For a finite field F, Duvall and Mortick [2] obtained the minimum polynomial h in terms of/ 
d, and the characteristic ofF, by considering the decimations of sequences from an appropriate 
basis of L(f). Recently, by using the results from [11] on product sequences, Buck and Zierler 
[1] have developed a new method which enabled them to extend the result [2] to arbitrary fields. 
Polynomials with multiple roots in both [2] and [1] are dealt with in relatively involved ways, 
which is also the case with inseparable polynomials in [1]. In the next section, we show how the 
minimum polynomial of decimated sequences can be derived in a new way that is both simple and 
compact. Instead of the results on product sequences, it is based on some facts from the general 
field theory and treats the inseparable and separable polynomials in a unified way. 

3. MINIMUM POLYNOMIAL OF DECIMATED SEQUENCES 

Our objective is to derive the minimum polynomial of the set {s^d)}dZ0 of d sequences 
obtained from the decimation by d of d successive translates of an arbitrary linear recurring 
sequence s over a field F. To this end, first note that the original sequence s can be obtained by 
interleaving the considered d decimated sequences. Second, for an arbitrary polynomial g over F 
such that g(0) & 0, L(g(xd)) is the set of all the sequences obtained by interleaving d members of 
L(g(x)), see [1]. Therefore, for an arbitrary polynomial g over F, g(0)^0, if s is a regular 
sequence of a polynomial / over F, f(0)^0, then f(x)\g(xd) holds if and only if the decimated 
sequences s$,0< r<d-l, all satisfy g. In view of the definition of minimum polynomials, we 
thus obtain the following simple characterization of the minimum polynomial of the considered 
decimated sequences. 

Theorem 1: Let/be a monic polynomial over F, / (0) ^ 0, let rfbe a positive integer, and let s be 
a regular sequence off. The minimum polynomial of the set of decimated sequences {^}dZl

0 is 
then equal to the unique monic polynomial g over F of minimum degree such that f(x) \g(xd). • 

Since the minimum polynomial established in Theorem 1 depends only off and d, we adopt 
the notation f^. It remains to find out an explicit characterization of f^. We proceed in three 
steps by proving the following lemmas. 

Lemma 1: Let / = l . c . m . ^ , ^ ) , where f and f2 are monic polynomials over F, yj(0)^0, 
/ 2 (0)*0 . Then/(rf )= l.c.m.(/1 M)J1M)). • 

Proof: Let h - I.e. m. (f (rf), /2,<y)) • We use the fact, already noted in the proof of Theorem 
1, that a(x)\b(xd) o a,d) \b, for arbitrary monic polynomials a and b over F, a(0) * 0, b(0) * 0. 
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Accordingly, for an arbitrary monic polynomial g over F, g(0) * 0, it follows that f(x)\g(xd) <=> 
fi(*)\gW), i = \2o fu{d)\g, i = 1 ,2oh\g. Hence, h = f{dy -

Lemma 2: Let /be a monic and irreducible polynomial over F, / (0) & 0, and let a be any root 
off in a splitting field E off Then f^ is the minimum polynomial of ad over F. • 

Proof: First, note that the minimum polynomial h of ad over i7 exists because E is an alge-
braic extension of F. We employ the well-known result, see [9], that the minimum polynomial of 
an element y algebraic over F must divide every polynomial g over F such that g(y) = 0. It 
suffices to prove that f(x)\g(xd)o g(ad) = 0 for an arbitrary monic polynomial g over F, 
g(0) & 0. Namely, by the definition of the minimum polynomial, it then follows that f^ = h. 
The implication "=>" is clear because a is then a root of g(xd). The implication "<=" is true 
because, if a is a root of g(xd), then the minimum polynomial of a , which is / , must divide 

Lemma 3: Let / = gr, where g is a monic and irreducible polynomial over F, g(0) ^ 0, and r is a 
positive integer. If F has characteristic p = 0, then f{d) -g{d)^ If i7 has characteristic p>0, 

r / max(c-e,0)i 

d = Apc, jpf &, and e > 0 is the exponent of inseparability of g, then f^ = g ^ ', fz| denot-
ing the smallest integer not smaller than a real number z. • 

Proof: We first prove that / ^ = g[d) for some positive integer t. Note that by Lemma 2 g ^ 
is irreducible. Assume that f{d) = ag(^}, where g(rf) | a . Then the minimality of f(d) implies that 
gr(x)\a(xd)g{d)(xd) mdgr(x)tg{d)(xd). Since g is irreducible, then g(x)\a(xd); hence, g(rf)|a, 
which contradicts the assumption. 

To determine t, we should analyze the multiplicities of the roots of g, g^, and g^(xd). We 
use some well-known facts from the general field theory (see [9], Ch. II, §1-6). If the character-
istic p of Fis zero, then both g and g^d) are separable and the roots of g, g^d), and g^(xd) are all 
simple. Then t-r. If F has characteristic p>0, d~kpc', p\k, and e>0 is the exponent of 
inseparability of g (g is separable if e = 0), then all the roots of g have multiplicity pe. Note that 
the exponent of inseparability of g is equal to the minimum nonnegative integer / such that ap is 
separable over i7, where a is is a root of g in a splitting field of g. Therefore, the exponent of 
inseparability of the minimum polynomial g^ of ad is max(e-c,0); hence, all the roots of g^ 
have multiplicity pm&x(e~c>°\ Finally, all the roots of g{d)(xd) have pc times larger multiplicity 
than the roots of g^, that is, pm&x(e>c\ Then t is the minimum positive integer j such that rpe < 

• max(e,e) # 

Consequently, in view of Theorem 1, Lemmas 1, 2, and 3 result in the following character-
ization of the minimum polynomial of decimated sequences. 

Theorem 2: Let/be a monic polynomial over F, / (0) ^ 0, that factors as / = WILifp, where / 
are distinct monic and irreducible polynomials, let d be a positive integer, and let s be a regular 
sequence of/ Then the minimum polynomial of the set of decimated sequences {s^}dZl

0 is given 
by 

f(d)^\.c.m.(f!;{dy\<i<m), (2) 
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where fu{d) is the minimum polynomial of af over F, ai being any root o f / in a splitting field of 
f tt = /;. if F has characteristic zero, and tt = [/; /£,maxOe/>°)] if p has characteristic /? > 0, d = kpc, 
p\k, and e, > 0 is the exponent of inseparability of/ , \<i <m. » 

Theorem 2 specifies /(^} as the minimum polynomial of a set of d decimated sequences rather 
than the set of all the decimated sequences, which is interesting for parallel generation of linear 
recurring sequences. As is shown in Section 2, li-d\f) = L(f^) also holds, so that expression 
(2) is equivalent to the one from [1]. However, our characterization is slightly different because 
of the unified treatment of inseparable and separable polynomials and because of the different 
treatment of the root multiplicities. 

Finally, we also prove the following properties yielding a necessary and sufficient condition 
for the minimum polynomial of a decimated sequence to depend only on the minimum polynomial 
of the original sequence, which is interesting for cryptographic applications. Note that the proof 
makes no use of Theorem 2. 

Proposition: Let/be a monic polynomial over i7, / (0) ^ 0, and let dbe a positive integer. Then 
the decimation by d defines a homomorphism of L(f) onto L(f^); hence, degf^ < degf. If 
and only if deg/(^ = deg / , then the decimation by d defines an isomorphism of L(f) onto 
L(f(d))' Furthermore, if d e g / ^ = deg / , then the minimum polynomial of s^ i s / ( ^ for every 
regular sequence s off. • 

Proof: The proof of the first assertion is straightforward. The second assertion directly fol-
lows from the well-known fact in the theory of vector spaces (see [9], Ch. I, §21), that a homo-
morphism of a finite-dimensional vector space onto another vector space is an isomorphism if and 
only if their dimensions are equal (otherwise, the dimension of the image vector space is strictly 
smaller than the dimension of the original one). As for the third assertion, assume that there exists 
a regular sequence s off such that s^ is a regular sequence of A, where h is a proper factor of 
f(dy From the definition of f(d), it then follows that the polynomial g(x) =g.c.d.(/(x),/?(x^)) is 
a proper factor of / such that g^=h. Then I$d\g) = L(h), which means that there exists 
another sequence s' e L(f) different from s such that s^ = s^d). Therefore, the decimation is 
not an isomorphism and the second assertion then implies that deg/(^ < deg / . • 
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