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1. INTRODUCTION 

The Hermite polynomials belong to the system of classical orthogonal polynomials (see [3], 
[6]). The following properties of these polynomials are well known: the orthogonal property, 
differential equation, Rodrigues representation, three-term recurrence relation. In 1990, P. R. 
Subramanian [5] studied a class of Hermite polynomials Hn(x) in the sense that one of the above-
mentioned four properties implies the other three. 

In [4], H. M. Srivastava defined a class of generalized Hermite polynomials {y™(x)}™=0 by 
the generating function 

emxt~tm = f>™(x) / w . 
77=0 

2. THE POLYNOMIALS hnm(x) 

In this paper, we consider the polynomials {hnm(x)}^=0 defined by hnm{x)-y^{2xlm). 
Their generating function is given by 

F(x,t) = e2*'-<m=fih„^(xy. (2.1) 

Note that hn2(x) - Hn(x)/n\ (Hermite polynomials). 
Expanding the left-hand side of (2.1), we obtain the following explicit formula: 

[n/m] /ry \n-mk 

VW=Z(-1)%f ,„• (2-2) 
£J k\{n-mk)\ 

By differentiating (2.1) with respect to t and comparing the corresponding coefficients, we 
obtain the following three-term relation: 

nh^m(x) = 2xhn_lm(x)-mhn_mm{x), n>m>\. (2.3) 

The starting polynomials are 

U 1 ) ^ . " = 0,l,...,m-l. (2.4) 

By differentiating (2.2) with respect to x, one by one, s times, we get 

D\m(x) = 2shn_sm(xX n>s>\, Ds^dsldx\ (2.5) 

For s =1,(2.5) is 
Dhn„(x) = 2hn_lm(x), n>\. (2.6) 
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For s = m-1, (2.5) becomes 

Dm-\m(x) = 2m-\+l_mtm(x), n>m-l. 

Now, from (2.3) and (2.7), we obtain 

nKm(x) = 2x- -)WJ-1 D" Vi.*(*). " s l > 

(2.7) 

(2.8) 

where D is the differential operator d I dx. 
lfm = 2, the relation (2.8) becomes (see [1]) Hn(x) = (2x-D)Hn_l(x), n>l 

A very interesting relation now follows: 

Km&) = / • 

-1 

n\ ^#r^'+#r I*"-*).D-"^i^SZ" / . (2.9) 

where /(JC) is any differentiable function not identically zero, Ds = ds I dx\ and (X)n = 1(1 + 1) 
... (X + n-1) is the Pochhammer symbol (see [2], [3]). 

3. EQUIVALENCE OF (2.9) AND OTHER RELATIONS 

First, we shall prove the relation (2.9). Let f(x) be any differentiable function not identically 
zero. From (2.8), we find: 

fK»(*) = -
n 

Vi.»(*) 

2x^D^+^Y{m-k)kD^-\f)t^^^ 
m-2 

H 

2 m-\ 
k=0 

{/K-lmW}-
(3.1) 

Iteration of (3.1) yields 

A V H O ) = 
1 2x—^-Dm-1 +-^Y(m-k)kD"-1-k(f)fj °k'Jy~) DJ f, n>\, (3.2) 

since h0 m(x) = 1. However, (3.2) is also true for n = 0. The relation (2.9) follows immediately. 
From (2.9) and f(x) - 1, we get the following beautiful relation: 

K.m(x) = n\ 2x- m n ,„- i -D" 1, «>0 . (3.3) 

If m = 2, (3.3) becomes (see [1]) #„(*) = [2x- £>]" 1, #i > 0. If m•= 3, then (2.9) becomes 

\ 3 0 ) = n! 4 4 

If f(x) = e~x", relation (3.4) yields 

2x-^D2
+^rl{D2f}+^{Df}{Df-l} + y-l{Df}D\ f, ,/>0. (3.4) 
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h3(x) = \--\ —[3D2 + l0x + 27x4 + lSx2D]"e-x3, n>0. 

Now, we shall show that (2.9) is a spring for developing the properties of hn m(x). First, we 
prove (2.8), starting from (2.9): 

Km^) = ^ 
m-2 

2*-^zr-1
+-^rl>-*),zr->-*(/)X 

z z fc=0 

* nk-Uf-1 

DK-J(f-1) 

2x-
OT

 n m - l -If 1 = 2x ^ - j r , ™ " 1 

P>jKk-j)\ 
D1 f 

Hence, we get (2.8). 
From (2.3) with n + \ substituted for n, and using (2.5), (2.6), and (2.8), we find 

{n + l)Dhn+l(x) = li 2x--^Z)""1 
•\rn-l K,nkX) 

= 2Km(x) + 2x-^Bm-x 

2m-\ 
Dh„Jx) = 2(n + l)hnJx). 

Thus, we obtain the following differential recurrence relation: 

Dh
n+lm(X) = 2h

n,m(Xl (3.5) 

Now, we shall prove the three-term recurrence relation (2.3). From (2.7) and (2.8), we get 

nhn,m{x) = 2xhn_lm(x) -J^Dm-%_hm(x) 

= 2xK-^m(x)-mhn_mm{x), n>m>\. 

The relation (2.3) follows from the last equality. 
By differentiating (2.8) with n + l substituted forn, and using (3.5), we obtain 

2x—^jlf 
2 m - l 

Kmi*) 

m 

(n + l)Dhn+lm(x) = a 

= 2\ m (x) 

Next, from (3.6), we get the following differential equation: 

2x rD' 
2m-\ 

m-\ 
(3.6) 

Dhn,m(X)-

m Dm-2xD + 2n KAX) = °- (3.7) 

For m-2 or 3, equation (3.7) becomes 

[D2 - 2xD + 2n]H„(x) = 0, n > 0, 
and 
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-D3-2xD + 2n 
4 

\ 3 ( x ) = 0, n > 0. 

Note that the first equation above is the Hermite differential equation. 
Now,, we show that (2.1) can be derived from the recurrence relation as follows (see [5]). 

Assume the existence of a generating function of the form 

F(x,t) = ^KJx)t". (3.8) 

Differentiate F(x, t) with respect to t and, using (2.3) and (2.4), develop the following first-order 
differential equation for F(x, t): 

F~\dFldt)^2x-mtm-\ (3.9) 

Now, we integrate both sides of (3.9) with respect to t, from 0 to t, to obtain 

F(x,t) = F(x,0)e2xt-tm. (3.10) 

Since F(x, 0) = \Jx) = 1, by (2.4), it follows that F(x91) = e2xt~tm. 
Finally, we shall prove in this section that the polynomial hn^m(x) is a solution of the differen-

tial equation (3.7). 
Assume that the polynomial y - Z£=0 %' %n~k *s a solution of equation (3.7). Then, 

Dy = ^(n-k)ak-x"-l-k, 
k=0 

and 
Dmy=J^(n + l-m-k)m.ak.x> 

k=0 

n-m—k 

If we substitute (3.11) and (3.12) into equation (3.7), we get 

~ ± ( n + \-k)m.ak_m.x"-k -2±(n-k)ak-x"-k
 +2n±ak-x"-k = 0. 

k=m 

From (3.13), we obtain 
n 

I 
k=m L 

k=0 k=0 

m ̂(n + l-k)m-ak_m+2kak 

m-\ 
xn-k+J^2kak-xn-k = 0. 

k=0 

Next, from (3.14), we find 

and 
kak = 0, k = 0,l,2,....,m-l, 

<*u 

m{n +1 - k)n 

2Tk 'lk-nv k >m. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Finally, from (3.15), (3.16), and a0 = 2"/n\, using induction, we can show that the polynomial 
y = ZjjL0 ak • x"~k has the following form: 

[nlm] (r) „\n~mk 

£0 k\(n-mk)\' 
(317) 
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Comparing (3.17) with (2.2), we see that the polynomial^ is the generalized Hermite poly-
nomial hnm(x). 

4. RELATION hnm{x) = (TI «!){exp[-Dw / 2m]}xn 

In this section, we prove the following relation 

Note that the operator exp[-Z)m /2ffl] has the following expansion: 
oo / -i\s j-\ms 

exp[-Z)"72'"] = X 1 : ^ - ^ r . (4.2) 
s-0 Si 

Since 
D r n s x n ^ m l ^ - ^ ) \ ] x n - m \ Yl>mS (s < [« / m]\ 

[0, n < ms. 

The relation (4.1) follows from (2.2), using (4.2) and (4.3). 
For m = 2, (4.1) has the form (see [2]) 

#„(x) = 2"{exp[-£2/4]}x"; 

for m = 3, (4.1) becomes 

K^x) = -{cxV[-D3l%]}x". 

Remark: We can classify the starting points into two distinct groups (see [5]): (a) full self-
contained springs and (b) associated springs. The generating function (2.1) and the relations 
(2.2), (2.9), (3.3), and (4.1) belong to category (a). These springs completely specify the general-
ized Hermite polynomials hnm(x). The differential equation (3.7), the recurrence relation (2.3), 
the differential recurrence relation (3.5), and the relation (2.8) belong to category (b) because they 
require supplementary conditions to specify the generalized Hermite polynomials hnm(x) fully. 
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