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1. INTRODUCTION 

One of the most satisfactory methods for modeling the physical reality consists in arriving at a 
suitable differential system which describes, in appropriate terms, the features of the phenomenon 
investigated. The problem is relatively uncomplicated in the finite dimensional setting but becomes 
very challenging when various partial differential equations, such as the wave, heat, electro-
magnetic, and other equations, become involved in the more specific description of the system. 

When it is difficult or even impossible to obtain an exact solution of the partial differential 
equations governing a continuous plant, the mathematical model is almost always reduced to a 
discrete form. Then the plant is represented by an appropriate connection of lumped-parameter 
elements and it may vibrate only in combinations of a certain set of assumed modes. 

In modeling continuous-time systems that are continuous or discrete in space, such classic 
trigonometric functions as sine, cosine, tangent, and cotangent, as well as corresponding hyper-
bolic functions, are widely used. As is well known, these functions are based on two irrational 
numbers: ;r = 3.14156926... and e = 2.7182818.... 

In this paper we shall be concerned with a new class of hyperbolic functions that are defined 
on the basis of the irrational number </> = ^^- ~ 1618033..., also known as the golden ratio. 

We shall introduce new functions called "Fibonacci hyperbolic functions" and show how they 
result from suitable application of modified numerical triangles. We shall also establish a set of 
suitable properties of Fibonacci hyperbolic functions such as symmetry, shifting, and links with the 
classic trigonometric and hyperbolic functions, respectively. Some examples illustrating pos-sible 
applications of the involved functions in mathematical modeling of physical plants are also 
presented. 

2. THE FIBONACCI TRIGONOMETRY 

Recently, studies and applications of discrete functions based on the irrational number 
^~~2^"~ 1-618033... have received considerable attention, especially in the theory of recurrence 
equations, of the Fibonacci sequence, their generalizations and applications (e.g., see [1], [2], [4], 
[5], [6], [9], and [10]). 

In this section we shall present fundamentals of a new class of functions called Fibonacci 
hyperbolic functions. 

Definition 1: Let 

y/ = l + (f>=3 + ^5 -2.618033... (1) 

be given, where <f> denotes the golden ratio. 
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For x e(-oo? oo), we define by analogy to the classic hyperbolic functions: chx, shx, thx, cthx, 
continuous functions 

sFh(x) = 

tFh{x) = 

yr-y/ 

sFh(x) 
cFh(x)' 

cFh{x) 
-(x+I 

V5 

sFh{x) 

(2) 

as the Fibonacci hyperbolic sine, cosine, tangent, and cotangent, respectively. 
Diagrams representing the above-defined Fibonacci sine and cosine are presented in Figure 1. 

Respective diagrams can easily be established for the Fibonacci tangent and cotangent. They are 
omitted here for the sake of presentation simplicity. 

• cFh i sFh 

FIGURE 1. Diagrams of cFh(x) and sFh(x) 

It is worth noting that function sFh{x) is odd-symmetric with respect to the coordinate origin 
but function cFh(x), while asymmetric with respect to the vertical coordinate x = 0, is even-
symmetric with respect to - y . 

On the basis of the above definition relations, we are able to establish a set of important 
properties of Fibonacci hyperbolic functions. In the sequel we shall focus attention on sFh(x) 
and cFh{x) only. 

First, they can be expressed in terms of the golden division ratio (/) as follows. Using the 
well-known identity 

f = ! + </> (3) 
and substituting it into expressions (2), we obtain 
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sFh(x) _<t>2x~f cFh(x) _ ^ 2 * + 1 > + < J r ( 2 * + 1 > 
(4 ) V5 ' " " w _ S 

Second, it is easy to demonstrate that when, instead of the continuous independent variable x, we 
use a discrete variable k e / (a set of all integer numbers k = . . . , - 2, -1,0,1,2,...) we can express 
functions sFh(x) and cFh(x) in terms of the corresponding elements of the Fibonacci sequence 

/ ( * + l) = / (* ) + / ( * - l ) , £ = . . . , -3 ,-2,-1,0,1,2,3, . . . (5) 

with / (0) = 0 and/(l) = 1 as follows: 
sFh(k) = f(2k), cFh(k) = f(2k + l). (6) 

Next, applying the well-known Binet formula (see [1], [2]) to the right-hand sides of expressions 
(6) yields 

r2k\ 
5J" sFh(k) = • 1 

, 2 / f c - l 
2k + 5 '?) + 5 + • • + 5r[2r2il'+-

1 
• > 2 * - l 

(7) 

and 

<*W = -̂ F 

,24: 

r=0 v 

VVvV1 + 5 2k + l 
+ • ••<2:n-

i^g:! p=0 

(8) 

Note that the right-hand sides of expressions (6) and (8) do not represent an infinite series 
but are finite sums, since their general term vanishes for 2k <2r + 1 and 2k <2p, respectively. 
For instance, at k = 8, the first vanishing term corresponds to 2r > 15 for the sFh(k) and to p > 8 
for the cFh(k). Thus, the calculations of sFh(k) and cFh(k) (k el) are reduced to easily com-
puted sums involving simple binomial coefficients, (£). 

Finally, it is possible to establish links of the Fibonacci hyperbolic functions sFh(k) and 
cFh(k) (k el) with the classic hyperbolic functions sinh(x) and cosh(x), but they are based on 
transition from an expression through its natural logarithm. For this purpose, we calculate the 
logarithm of the irrational number (j>y namely, 

a :ln0 = ln -^^ -0 .4812118 . (9) 

Next, we calculate exponential functions 

.« 1 + V5 
<t>, S-\ -f\ (10) 

and the corresponding hyperbolic functions 

cosh a - V5 sinh a - (11) 
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Substituting values (11) raised to the 2k^ power into (7) and (8), we get 

sFh(k) = -isinh(2Jta), cFh(k) = -^cosh[(2£ + l)a]. (12) 

Thus, we have one operation only for calculating sFh(k) or cFh(k), i.e., the multiplication of the 
known hyperbolic function of the argument 2ka or (2£ + l)a, respectively, by the coefficient 
2 / V5 = 0.8944271... . For example, 

and 

sFh(S) = -j=sh(\6a) = 0.8944271-1103.6922 = 987 

cFh($) = -j=ch(lla) = 0.8944271-1785.5002 = 1597. 

In a similar manner we can establish links of Fibonacci hyperbolic functions with such trigo-
nometric functions as sine and cosine with respective arguments. 

3. PROPERTIES OF FIBONACCI HYPERBOLIC FUNCTIONS 

Taking into account the expressions presented in the preceding section, we can derive a set of 
important properties and relations which come into existence in Fibonacci hyperbolic trigonom-
etry. 

First, it is possible to demonstrate on the basis of (6) that the following equalities hold: 
sFh{-k) = -sFh(k), cFh(-k) = cFh(k -1). (13) 

Thus, sFh(k) is odd-symmetric with respect to the coordinate origin but cFh(k) is even-sym-
metric with respect to the vertical line £ = - - . Note that cFh(-j) = ^ = 0.8944271..., which 
means that the minimum of cFh(k) appears at k = - y and differs from that for the classic hyper-
bolic ch(x) which equals min(cosh(x)) at x = 0. On the other hand, for k = 0, function cFh(k) 
takes the value cFh(0) = 1. 

It is easy to prove the remaining important properties of functions sFh(k) and cFh(k). Some 
of these are given below: 

1. sFh(k) + cFh(k) = sFh(k + l), 

2. sFh2(k) + cFh2(k) = cFh(2k\ 

3. cFh2(k)-sFh2(k) = l + sFh(k)cFh(k), 

'k-l-\ 4. sFh(k) + sFh(£) = S$Fh(^^\Fh\ 

5. sFh(k)-sFh(£) = ^sFh(^^)cFhC 

6. cFh(k) + cFh(t) = ScFh(!^)cFh( 

2 

k-l^^Jk + l-l 

k + l\ n(k + £-l 
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7. cFh(k) - cFh{t) = SsFh[^-^\sFh\ 

8. sFh(2k) = SsFh(k)cFh\k - - \ 

k+e-i 

9. cFh(2k) = ScFh{k)cFh(k - -1 +1, 

10. cFh(k)cFh(k -1) - sFh2(k) = 1. 

For the sake of presentation compactness, the corresponding proofs are omitted here. It is 
worth noting that the above properties also remain valid for continuous arguments x G(-QO, oo) 
and y e (-oo, oo) ? respectively. 

4 RELATIONSHIPS BETWEEN FIBONACCI HYPERBOLIC FUNCTIONS 
AND MODIFIED NUMERICAL TRIANGLES 

Some advantages in calculating Fibonacci hyperbolic functions follow from the structure and 
properties of modified numerical triangles (see [5], [9], [10]). To facilitate their demonstration, 
we shall briefly discuss these triangles and their main characteristics. 

The first modified numerical triangle (MNT1) contains elements corresponding to coeffi-
cients of polynomials in q defined by the recurrence expression 

Tk+l(q) = (2 + q)Tk{q)- Tk_M, Uq) = 1, Tx(q) = \ + q, (14) 

with q as, in a general case, a complex parameter and k = 0, +1, + 2, ± 3,... . 
Coefficients of the above polynomials for successive values of & belong to MNT1, which 

takes the form 

MNT1 

k X 
0 
1 
2 
3 
4 
5 
6 

0 

~r i 
i 
i 
i 
i 
i 

i 

i 
3 
6 
10 
15 
21 

2 

1 
5 
15 
35 
70 

3 

1 
7 
28 
84 

4 

1 
9 
45 

5 6 ••• 

1 
11 1 

The second modified numerical triangle (MNT2) corresponds to polynomials in q defined by 
the expression 

Pk+i(a) = Q+m(a)-Pk-i(a), PM = o, PM = 1, (is) 
with A = 0,±l,+2,+3,. . . . 
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Coefficients of these polynomials belong to MNT2, which takes the form 

MNT2 

V 0 
1 
2 
3 
4 
5 
6 

m 0 

"IT 
l 
2 
3 
4 
5 
6 

1 

1 
4 

10 
20 
35 

2 

1 
6 

21 
56 

3 

1 
8 

36 

4 

1 
10 

5 6 ••• 

1 

The above polynomials fulfill a set of important relations, and some examples are as follows: 

Tk{q) - Tk_x{cj) = qPk(g), Pk - Pk_x = Tk_x{q). (16) 

It was demonstrated in [9] that, for q = 1, the following relations hold: 

Tk(l) = f(2k + l), Pk=f(2k), A = 0 , ± l , ± 2 , ± 3 , . . . . (17) 

Thus, taking into account expressions (6), we have 

cFh(k) = Tk(l), sFh(k) = Pk(\). (18) 

It is worth noting that the modified numerical triangles can be used effectively to determine values 
of corresponding Fibonacci hyperbolic functions. 

5. ILLUSTRATION EXAMPLES 

Let us now proceed to illustrate possible applications of Fibonacci hyperbolic trigonometry 
for solving problems arising from biology, physics, or technics. We shall demonstrate these appli-
cations through suitable examples. 

Example 1: A microwave system usually contains such an essential part as a junction. It con-
sists of two or more microwave components or transmission lines connected together (see [3], 
[8]). The propagation of electromagnetic signals along each component is described by the trans-
mission line equation, 

d2V 
dx2 = ZYV, (19) 

where V is the Laplace transform of the voltage at point x e (0, £) of the space variable in the 
direction of propagation and Z and Y denote the per unit length impedance and admittance of the 
line, respectively. 

In a general case, the solution for the voltage as a function of time is difficult; for this and 
other reasons, recourse to an approximate approach is needed. Following this line of reasoning 
and applying the well-known second-order difference approximation yields 

V(k +1) - (2 + q)V(k) + V(k -1) = 0, V(0) = V0, V(l) = (1 + q)V(0) (20) 
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with 
q = z<&,. (2i) 

where Z0 = Zh and YQ = Y-h denote the impedance and admittance per distance h = Ax of the 
space coordinate discretization. 

Solving equation (20) with respect to V{k) gives 

V(k) = Tk(q)V0 + Z0Pk(q)I0, (22) 

where V0 and IQ denote the Laplace transforms of the voltage and current at x = 0, i.e., for k = 0. 
On the other hand, following the general method of solution of difference equation (20) 

yields 
V(k) = q-k[cFh(k)V0 + Z0sFhq(k)I0], (23) 

where sFhq(k) and cFhq(k) denote generalized Fibonacci hyperbolic sinus and cosinus, respec-
tively. They are defined as follows. 

Definition 2: If q denotes, in the general case, a complex parameter, then the following 
expressions, 

SFhJk): 1 

V?2+4? 
n \2k ( n 

g + 2 + yjg2+4q | | -q-2 + ^q2+4q 
J V 

-2k 

cFh(k) = 
Jq^4q 

q + 2 + ^q2+4q 
2 

+ 
J V 

-q-2 + ^q2+4q 
2 

\-(2k+l) 
(24) 

define the so-called generalized Fibonacci hyperbolic sinus and cosinus, respectively. Using the 
above expressions, we can easily establish the generalized Fibonacci hyperbolic tangent and co-
tangent. For the sake of presentation compactness, corresponding expressions are omitted here. 

Thus, comparing solutions (22) and (23) and referring to (24) gives 

cFh(k) = q%(q), sFh(k) = qkPk(q). (25) 

Moreover, it is easily seen that fixing q = 1 we obtain the usual Fibonacci hyperbolic func-
tions cFh(k) and sFh(k), so that we have 

cFhq{k)\q=l = cFh(k\ sFhq(k)\q=l = sFh(k). (26) 

Now it is evident that the above presented Fibonacci hyperbolic functions and modified 
numerical triangles can be very useful for practical problems studies. 

Example 2: The filter design problem at microwave frequencies, where distributed parameter 
elements must be used, is extremely complicated, and no complete theory or synthesis procedure 
exists for solving the problem. The complex behavior of microwave circuit elements makes it 
impossible to develop a general and complete synthesis procedure [7]. However, a procedure 
based on the Fibonacci hyperbolic trigonometry appears as useful technique for studies of micro-
wave filters. The effect of lossy elements or quarter-wave transformers can easily be considered. 
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The latter case is represented by the network shown in Figure 2. It contains a number of quarter-
wave transformers loaded by the lumped parameter elements characterized by impedance Zv The 
voltage and current distributions along the system are described by the matrix equation 

'U(k + \j 
I(k + 1) 

a b 
c d 

U(k) , * = 0,1,2,. 

where a, b, c, and d denote, in a general case, complex parameters fulfilling the relation 
ad-be = I. 

(27) 

(28) 

{3 

d) a b 
c d 

n-l I Lf_2_ 
a b 
c d 

a b 
c d 

_o 

FIGURE 2. Ladder of Two Ports 

In the sequel we shall limit our attention to a system having the following parameters: 

a = l, b = -JZc, c = ̂ y d = 0, (29) 

where Zc is the characteristic impedance of each one of two port elements in the system and 

Introducing characteristic parameter 

P = z: 
(30) 

and solving equation (27) with respect to U(k\ k = 0,1,2,..., we get the second-order difference 
equation with complex coefficients, that is, 

U(k + l) + jpU(k) + U(k-l) = 0, U(0) = U09 U(l) = -jpU(0). 

Now, comparing respective coefficients in equations (22) and (31) yields 

U(2k) = (-j)2k Tk(p2), U(2k +1) = (-j)2k+1Pk(p2), 

(31) 

(32) 

where Tk(x) andi^(x) are the polynomials in x = p2 with coefficients from MNT1 and MNT2, 
respectively. 

Taking into account the relationship between Fibonacci hyperbolic functions and polynomials 
Tk(x) and Pk(x), we can transform relations (32) into the following forms: 

JP ) 

1 
\2k 

cFhAk), U(2k + l) = \ ~ 
P \JP 

2/t+l 

sFh , (k), with k = 0,1,2,... . (33) 
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Thus, a set of suitable expressions has been established which gives much more facility and 
improvement with respect to up-to-date available ones in the design of microwave filters. It must 
be stressed that no assumption has been made on the lumped parameter elements; therefore, the 
presented approach is quite general. 

Example 3: One of the fundamental problems in botany lies in suitable descriptions of leaf 
growings [12]. The geometry of leaf growing is characterized by a spiral-symmetry structure. 
Bio-organisms draw images on the surface of the leaves forming left- and right-turning spiral lines 
with crossings at respective points. The symmetry order of the leaf-grilles are determined by a 
number of spiral lines in respective patterns. During leaf growing, these spiral lines can be trans-
formed into moving hyperboles with cross-points determined by the coordinates expressed in 
terms of Fibonacci hyperbolic functions as follows: 

uk-a- sFh(k), uk_x - a• cFh{k -1), (34) 

where k = 0,1,2,... is the index of the cross-point in the leaf-grille and a denotes the scale coef-
ficient of the moving hyperbole with respect to parameters of a unit hyperbole. 

If the grille is square, then the coordinates of the cross-points take integer values that fulfill 
the relation 

uk+iuk ~ uk+i + ul= c o n s t • (3 5) 

The structure-symmetry order of the logarithmic grille is determined by the parameter 

qt = qD, (36) 
where q denotes the similarity coefficient and D is the angle divergence. 

For tree foliage, leaf growing is determined in terms of the Fibonacci sequence and fulfills the 
equation 

| /2(*) + / ( * ) / ( * + l ) - / 2 ( * + l)|=l, (37) 

and at the limit k —> oo, the angle divergence is equal to 

lim £> = : ! £ z l = 0-1 ~ 0.618033... . (38) 
&-»°° 2 

Other cases of leaf growing are governed by similar expressions. Following a more general 
line of reasoning, it is possible to prove that there are general principles in pattern formation on 
the plants. 

69 CONCLUSIONS 

In this paper we have presented the new ideas and concepts concerning hyperbolic trigonom-
etry. It has been shown that many problems appearing in mathematical modeling of physical 
plants can be solved successfully by applying such new functions as Fibonacci hyperbolic sine 
and/or cosine. The concepts presented in this paper have the following features: a) they produce 
analytic expressions for both continuous and discrete arguments; b) in the discrete case, there 
exist respective links with the classic Fibonacci sequence; c) important simplifications in calculus 
can be achieved by using modified numerical triangles. 

The application of Fibonacci hyperbolic functions has been illustrated by suitable examples. 
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