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1. INTRODUCTION 

In 1970 C. T. Long and J. H. Jordan completed a series of two papers, [3] and [4], in which 
they analyzed the arithmetical structure of certain classes of quadratic irrationals and the effects 
on their structure after multiplication by rational numbers. In particular, for a positive integer a, 
let cFn = 2F„(a) and Xn - !£„(a) be the nih generalized Fibonacci and generalized Lucas num-
bers, respectively. That is, &Q = 0, 9^ = 1, <£0 = 2, Xx = a and, for n > 1, &n = a%_x + 9 ^ 2 , 
!£n = a%n_1 +Xn_2. We denote the generalized golden ratio by <pa. Thus, 

a + Va2+4 r , „ 
#>* = 2 = [*>*,••.] = [*] , 

where the last expression denotes the (simple) continued fraction expansion for <pa and the bar 
indicates the periodicity. It follows that 1imn__>ao&n+1/9'n = <pa. We note that in the case in which 
a - 1 we have SFW = Fn, Xn = Z„, and ̂  = #>. 

Among their other interesting results, Long and Jordan investigated and compared the con-
tinued fraction expansions of j<pa and j<pa when r and s are consecutive generalized Fibonacci 
numbers or consecutive generalized Lucas numbers. These results led them to consider the 
structure of numbers of the form j(pa and ~<pa where r = cF„ and s = £Bn. They wrote (in the 
present notation) [4]: 

"In view of the preceding results, one would expect an interesting theorem concerning the 
simple continued fraction of 

—— (D„ and —— ®„ 
cJbn <rn 

but we were unable to make a general assertion value for all a. To illustrate the difficulty, note 
that, when a = 2 and <p2 = 1 + <Jl, we have 

p 2 = [0,1,5,1,3,5,1,7], 
cA/4 

^ ? =[0,1,5,1,5, 3,1,4,1,7], 

^-<p2 = [0,1,5,1,4,1,3,5,1,4,1,7]." 

They do, however, discover the following two beautiful identities for the case in which a - 1. 
We state them here as 
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Theorem 1: For n > 4, 

K 

and 

-<p-. 

F 

0,1,2,1,1,. ..,1,1,3,1,1,..., 1,1,4 
n-4 times H-3 times 

( l . i) 

3,1,1,...,1,1,3,1,1,..., 1,1,2,4 
n-3 times «-4 times 

Our first objective here is to extend their result to the more general case for arbitrary a. We 
begin with the elementary observation that 

l i m f ^ = ̂  = [0,1,2,1], 

and, thus, the initial string of l's in (1.1) is not surprising. It is the beautiful near mirror symmetry 
of the interior portion of the periodic part of (1.1) that is unexpected. More generally, one has 

v 3<L a2 +4 + aVa2 +4 
2(a2+4) 

0 , L a 2 + U , a 2 

Thus, for large «, we would expect the continued fraction expansion for (3?M / Xn )<pa to begin 
with [0,1, a2 +1,1, a2,1, a2,1,...]. As Long and Jordan remark, however, in this case we appear 
to lose the symmetry. In fact, the near mirror symmetry in (1.1) is somewhat deceptive. Perhaps 
it is better to view (1.1) as a "recursive system" in the following sense. We define the strings or 
"words" Wn = Wn for n > 4 by W4 = (3,1) and, for n > 4, W„ = (Wn_h 1,1), where Wn_x is the word 
Wn__x read backwards. For example, W5 = (1,3,1,1) and W6 = (1,1,3,1,1,1). Thus, we may now 
reformulate (1.1) as 

K 
tp = 0,1,2,^ , 4 

We note that the continued fraction expansions given above for (3^ / &n)(pa obey a similar recur-
sive behavior. This leads to our first result. 

Theorem 2: Let 9n-9n{a) and 5£w = ££„(a) be the n^ generalized Fibonacci and Lucas 
numbers, respectively. Let W4 = W4(a) = (1, a2 -1, a2 +1,1) and, for n > 4, let °Wn = W„(a) = 
CW,

w_1,a2,l). Then, for n>4, 

X ^ « = 0,l,a2 + l,°ir„, a 2 +3 

and 

^ w 

g; -?v a2+2,¥"„, a2 + l V + 3 

(1.2) 

(1.3) 

We remark that for a -1, 
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rr4]=i+-
0 + 1 

:l+2+|=3+|=TO, 

H 
thus, Theorem 1 and Theorem 2 are equivalent when a = 1. 

One may define the words (Wn occurring in Theorem 2 explicitly rather than iteratively. In 
particular, a simple induction argument reveals that, for n > 4 even, 

and, for n > 4 odd, 

Wn = ({1, a2}(""4)/2,1, a2 - 1 , a2 +1,1, {a2, l}(w"4)/2), 

# w = ({1, a2}^"5>/2,1, a2 +1, a2 -1,1, {a 2 ,1}^ / 2 ) , 

(1.4) 

where by {1, a2}" we mean the word (1, a2) repeated n times. 
As Long and Jordan implicitly note with respect to Theorem 1, Theorem 2 immediately 

implies that ($Fn I Xn )cpa and (£n 19n )<pa are not equivalent numbers. Recall that two real num-
bers are said to be equivalent if, from some point on, their continued fraction expansions agree 
(see [5]). 

Next, we extend Theorem 1 in a different direction. We wish to analyze the structure of 
quadratic irrationals of the form ($Pmnl '££„)(pa. Ifm is even, then ?Fmnl £n is an integer (see [7]); 
thus, we consider only the case in which m is odd. We first state an extension of Theorem 1 in 
this context for the case m = 3. 

Theorem 3: For n > 4, if n is even, then 

'-&-? = 2n+l 1,3,1,1,...,1,1, Z^-2,2, 1,1,...,1,1,2,1,^-2 
n-2 times n-A times 

If n>4 is odd, then 

K 3« 9 = Fln^,\,2,\\,...,\,\,Lln,\,\,...,\,\\Lln 
n-4 times n-2 times 

The general formulation of Theorem 3 appears to be more complicated and requires us to 
define several useful sums. For odd integers m, we let 

(w-l)/2 (w-l)/2 

Vl(m)= X (-1)*3W F(m)= ^>2 / t + 1 , 

(w-l)/2 ( /H-1) /2 

it=l Jfc=l 

We remark that F^m) and L^w) are positive integers if and only if m = 1 mod 4. We believe that 
one may generalize the proof of Theorem 3 to prove the following conjecture. 

Conjecture 4: Let 9n = 3*n (a) and Xn = !£n(a) be the nih generalized Fibonacci and Lucas num-
bers, respectively, and m an odd integer. Suppose m > 3 is an odd integer and n > 4. For n even, 
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let % =%(a) =(l,a2 +\l,{a\iyn-4)/\a2 -1,1) and fn =Yn(a) = ({a2,l}("-2)/2,a2 +2); for 
n odd, let °Wn = Wn(a) = ({a2, 1}(""5)/2). If n is odd, then 

"J m 
-9 a F(m), 1, a2 +1,1, °W„, a2 +1, a2L(w) + a2 - 1 , °tf„+2, 1, a2 + 2, L(w) 

If n is even and m = 1 mod 4, then 
g? 

ci / M 

Ji(i»)>'K,L1(w),rB,L1(w) 

If w is even and m = 3 mod 4, then 

<Fwi 

oLy, 
-<Pa = -FiCw) - 1 , Y„, -L^m) - 2, % , -L^iB) - 2 

One may also find analogous expansions for (Xmn/<3'n)(pa. For example, one may adopt the 
method of proof of Theorem 3 to deduce 

Theorem 5: For n > 4, if n is even, then 

-<p= 5F2„+1 + 3;3,l,l , . . . ,l ,l ,2,I2„,l,l , . . . ,l ,l ,2,5Z2„+4 
«-3 times n-3 times 

If n > 4 is odd, then 

Aw 
F„ 9 = 5F2„+1-4,2,1,!,...,!, 1,4,-2,2,1,1, . ..,1,1, 51^ - 6 

w-3 times w-3 times 

Long and Jordan [4] concluded their investigation by proving the surprising result that, for 
any positive integers m and n, (^ml9n)(pa and (&J&m)<pa are equivalent numbers. They re-
marked, however, that it is not always the case that (Xm I &n)(pa and (Xn/ Xm)(pa are equivalent 
numbers. To illustrate this, they noted that 

^ = [0,1,2,3,1,4] and ^-^-[3 ,1 ,3 ,2 ,4] . 

We obseive that, in their example, the indices 2 and 4 are not relatively prime. Here we prove 
that this is the only possible case in which two such numbers are not equivalent. In particular, we 
prove 

Theorem, 6: If i£w = ££„(a) is the n^ generalized Lucas number, then for relatively prime posi-
tive integers m and n, 

are equivalent numbers. 

More recently, Long [2] studied the arithmetical structure of classes of quadratic irrationals 
involving generalized Fibonacci and Lucas numbers of the form 
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aSn + Tm4^TA^ ( 1 5 ) 

where S„ is either 9n or X„ and Tm is either &>m or ££m. For example, he investigated 

^ , + ^ ^ ( 1 6 ) 

For numbers of the form (1.5), Long showed that their continued fraction expansions have the 
general shape 

where the a0 and#r were explicitly computed. He also proved that (al7a2, . . . ,aM) is a palin-
drome, but was unable to determine the precise value of an for 0<n<r. Long also observed 
that the period length r appeared always to be even and that the value of r appeared not to be 
bounded as a function of a, m, and n. Here we claim that the continued fraction for such numbers 
may be completely determined. As an illustration, in Section 6 we provide the precise formula for 
the continued fraction expansion for numbers of the form (1.6). As the expansion is somewhat 
complicated in general, we do not state it here in the introduction; instead, we state it explicitly in 
Section 6 as Theorems 7 and 8. As a consequence of our results, we are able to prove that Long's 
first observation is true while his second observation is false. 

2. BASIC IDENTITIES AND CONTINUED FRACTIONS 

We begin with a list of well-known identities involving Fibonacci and Lucas numbers that will 
be utilized in our arguments (for proofs, see, e.g., [7]). For n > 1, 

1 AnjFn+l Fn 
1 OJ ~{Fn Fn_J ( 2 J ) 

F„=Fn_l+Fn_2, Ln = Ln_x + Ln_2, Ln=Fn+1+Fn_l? (2.2) 
Fn+m ~ (~dmF„_m = FmLn, (2.3) 

Ln+m + (-1) Ln_m = LmLn, (2.4) 

L2„+4(-iy+l = 5F„\ (2.5) 

F2n=FnLn. (2.6) 

If 9n = 9n (a) and Xn - !£n(a) denote the nth generalized Fibonacci and Lucas numbers, 
respectively, then for n > 1, 

a2 + 1 a2 Y _ ( ^2n+l a<$2n \ n ? x 
1 l) -{a-%„ ®n_x) KZI) 

%n=a®n+'Wn_l, (2.8) 

22„=4®n+l®n_l+a2®l (2.9) 

9„9n+2-^n+^{-\r\ (2.10) 
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( a 2 + 4 ) ^ + 4(-l)" = ^ . 

(2.11) 

(2.12) 

For a real number a, we write a = [a0, ax,...] for the simple continued fraction expansion of 
a. That is, 

1 a = aQ-\ 
£»! + - 1 

1 
CU+-

where all the an are integers and an > 0 for all n > 0 (for further details, see [5]). Basic to our 
method is a fundamental connection between 2x2 matrices and formal continued fractions. This 
connection has been popularized recently by Stark [6] and by van der Poorten [8] and [9]. Let 
c0, c1; ..., cN be real numbers. Then the fundamental correspondence may be stated as follows: If 

then 

c0 l Y q 1 
1 O i l 0 

PN 

1~\-(PN PN-I 

<1N 

1 °J \1N fcv-i/ 

— LC0;C1> •••) CNi-

We remark that since c0, cb..., cN are real numbers, pN I qN may not necessarily be rational. 

3. THE PROOF OF THEOREM 2 

We first consider the case in which n is even. Let a be the quadratic irrational defined by 

a = \ a2 +1, {1, a2}("-4)/2,1, a2 -1, a2 +1,1, {a2, l} ("-^ / 2 , a2 + 3 

We will compute a via the fundamental correspondence between matrices and continued frac-
tions. Thus, if we express the following matrix product as 

a 2 + l \\\(\ \\{a2 \^n~m(\ \\{a2-\ l Y a 2 + l 1 
1 0 1 0 1 0 1 0 1 0 

x , M (n-4)/2 , . 
1 \\\[a2 l V l lU (a2+3 l](a 1 
1 0 1 OKI 0 1 0 1 0 

1 

r s 
t u 

then it follows that a~r 11. In view of (2.7), we may express the above as 

r s 
t u 

a2+2 a2 + \ 

a2+\ 1 V 
^ n - 3 a ^ « - 4 

V«S?„-4 9 «-5 J 

a1 1 
a 2 - l 1 

1 1 
9, n-3 
1QE 

a®„_d\(a2 + 3 l)(a 1 
trl&. n-4 9. 

' n - 4 

n-5 1 O i l 0 

The functional equation 9k = a&i
k_l + 9k_2 enables us to simplify the above product and carry 

out the multiplication to deduce 
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r s 
t u 

' &L+29? a 1 
2 , A\OE2 or.2 OE2 II 1 0 (ct+AypU-vt ' n-\ 

{®l+l+2®l)a+®l &L+T&i } 1 n+1 

Thus, we have 

((a2+4)^_1-^2_2 )a+^„_l (a1+4)91,-91, j 

(®l+l + 2®l)a + ®l r a- — -
t ((ai+4Wl1-®l2)a + ®l1 

or, equivalently, 

((a2 +4)9U-92
n_2)a2 + ( 3 ^ - 2 ^ 3 ^ )«-3? 2 = 0. 

For ease of exposition, we make the following change of variables: let 

A = (a2
+4Wl1- ®l2, B= 3 t i - 2 3 ? - S*«, C = -92

n. 

Since a > 0, equation (3.1) gives 

(3.1) 

a = 
-B+4B2-AAC 

2A 
Next, if we let x = [0,1, a] = a I (a +1), then 

2C-B + y/B2-4AC 
x = - 2(A-B + C) 

The expressions 2C-B, B2 -4AC, and A-B + C may be simplified slightly by successive appli-
cations of the functional equation for 8F„ . It is an algebraically complicated but straightforward 
task to verify that 

x = 
9. ( a{a% +23U ) + V(a2 + 4)(4^+ 1 <$„_, + a2ffl2)' 

4^ + I ^„_ 1 + a2^2 (3.2) 

Finally, by (2.8) and (2.9), we have 

%2„ = (a&„ + 29n_l)2 = 4$n+19n_, + a292
n, 

and therefore, (3.2) implies 

x = 
®n(a£„ + £nJa2+4) 9n[a + 4a2+4) 

2X1 2£„ 

which, by (1.4), is precisely equation (1.2) for even n. 
The proof of (1.2) for n odd is similar to the even case given above. In particular, for n odd, 

we let 

a- \a2 +1, {1, a2Yn-5),\ 1, a2 +1, a2 -1,1, {a2,1}(W"3)/2, a2 + 3 

Thus, in the language of matrices, we have 
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"Y1 m JK J 
(«-5)/2 

i n / V + i i ¥ a 2 - i l 
1 OJ 1 0 1 0 

1 1" 
1 0 

w x » («-3)/2 , „ 
a2 l Y l lM fa2+3 1 fa 1 
1 0 1 0 O i l 0 

r 5 
t u 

with a = r/t. Simplifying the matrix product, as in the case for n even, reveals 

9 ^ , +29? 8F: 2 \ 

t u) ^ + 4 ) ^ - ^ 9?-i. 
a 1 
1 0 

Equation (1.2) for n odd now follows from the previous argument. 
Equation (1.3) follows immediately from (1.2) and Theorem 11 of [4], which completes the 

proof. 
4, THE PROOF OF THEOREM 3 

We essentially adopt the argument used in the proof of Theorem 2. First, we consider the 
case in which n is even. Let a be the quadratic irrational defined by 

a 
n-4 3 , { i r ^ „ - 2 , 2 , { i r 4 , 2 , l , A „ - 2 

By the fundamental correspondence between matrices and continued fractions, we observe that if 
we express the following matrix product as 

3 l Y l 1 
1 0 1 0 

«-2 
Lm-2 1 

1 0 
2 l Y l 1 
1 0 1 0 

n - 4 

\ x JYV ii? * 
(4.1) 

r s 
t u 

then we have a-r It. Using (2.1), (2.2), (2.3), and (2.4) together with the fact that n is even, 
we multiply and simplify the products within the parentheses to produce 

r s\ ( 4„ -4_ 2 4 V 4„ -Fn_x 4 Y a l 

_(kl J^fa 1 
k3 k4){l 0 

(4.2) 

where 

^1 ~ 4 » Mn-l ^2n+l"+" *> 
^2 = 4«4> 
h = (4-i+24_2)(4„ - 4_x)+4-i(4-2 + 4+3+A,-3), 
&4 = 4 - l + 4 + l " " l -

(4.3) 

We note that identities (4.1) and (4.2) lead to a complicated, but useful, identity involving Fibo-
nacci and Lucas numbers. In particular, we observe that 
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and thus we have 

By identity (4.2), we have 
»*i'*4 K2K3 — 1. ( T . T 1 ) 

r s\_ fkxa + k2 kx 
t u) ~ \k3a + k4 k2 

and since a-rIt, this implies 

Therefore, k3a2 + (k4 - kx)a -k2=0, hence, 

k3a + £4 

If we now let x = [Fn+l -I, a], then 

a : 
2AT3 

x = F„^-l + 2_ [«+i 
^1 *4~^y\ 4 1' +4/^2/^3 

_ 1 1 ^4 V(^4 "1) + 4/r2/f3 

(4.5) 

_ j F " + 1 ' " ' - 2 ^ 
By (4.3), we note that kx + k4 = L6n. This, together with (4.4), reveals that 

(k4 - k^2 + 4k2k3 = (k4 + ^ ) 2 - 4kYk4 + 4£2£3 

- 4« ~~ 4(kxk4 - k2k3) - L6n - 4. 

In view of (2.5) and the fact that n is even, we may express the above as (k4 - k^2 +4k2k3 = 5F%n. 
This, along with (4.5), (2.2), (2.3), (2.4), and (2.6), yields 

\J7 _ 1 • v l - 77 1 • 6K ~ 2 4 » - - l ~ 2 4 K + 1 + 2 ~ V " 6 w 

L^2«+l x> " J - r2«+l X + ^77 TT 

= ~24ft+l4ft4 + 2 4 K 4 + Afo ~ 24ft-l ~ 2A»+1 + 2 + V^A^ 
- 2 ( A A ) 

= ~F6n ~ ^F6n = 4»4» + 4 A^* =
 F3„ + 4 * ^ = 4 K „ 

~24H4 24«4 2 4 4 
which completes the proof for « even. 

The proof for n odd is similar to the even case given above with the exception that the 
change of variables of (4.3) is replaced by 

K ~ Asw ~ 4«+l ~ F2n-\ ~ *> 
*2 ~ 4«4> 
A = A«+l (4« "" 4+1) + 4+1 (An-1 + 4+1 + 4-2)' 
*4 = 4n+l ~ 4«-l + 1-
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5* THE PROOF OF THEOREM 6 

It is a classical result from the theory of continued fractions that a and /3 are equivalent 
numbers if and only if there exist integers a, b, c9 and d so that a-{a/3+b)l(c/3+d) with 
ad-be = ±1 (see [5]). Since m and n are relatively prime positive integers, we may find positive 
integers x and y so that nx-my-\. Thus, if we let k = 2ym, then we also have k = 2xn - 2. We 
now define 

a-
(p cm cp cm 

\2y)m,®k+2l<Enm*&kIXn 

CD •> ~ * + 1 > *~ CO 

As we remarked in the introduction, since 3^+ 2 = S^w and ^ -
are both integers. Thus, a, b, c, and d are all integers. Also, by (2.10), we note that 

ad-bc = &k9k+2-&l+1 = (-Vf+1 = ±l. 

Next, in light of (2.11), we have 

C\^<Pa X. 
+d 

ff*+2P« + 9j 
^jfe+i^fl + ^ j t y <^« 

'fc+i i _ °^ffl p«. 

« / 
Hence, (Xm / Xn)(pa and (2JW / Xm)<pa are equivalent numbers. 

6. A RELATED CLASS OF QUADRATIC IRRATIONALS 

For integers n > 2 and m > 0, we define the quadratic irrational <3l(n, m) = 2&(a; n, m) by 

2ft(«, m) = - . 

It will also be useful to define the integer TV = N(n, m) to be TV = c&>n + (a2 +4)2£w . We now 
examine the continued fraction expansion for 2ft(w, m). We consider separately the case of TV even 
and the case of TV odd. As will be evident, the case of TV odd is substantially more complicated 
that the case of TV even. 

Theorem. 7: If TV is even, then 
(i) ifm is even, 

(ti) ifm is odd and 3*m > 2, 

&(«,/») = TV/2,9m9(ff +4)9^ „ 

&(*, w) = (TV - 2) / 2,1, 3 ^ - 2,1, (a2 + 4 )3^ - 2 

Theorem 8: If TV is odd, then 
fi) ifm is even, 3? = 0 mod 4 and 9L > 4, 

a(w, /if) - (TV -1) / 2,1,1, ( 3 ^ - 4) / 4,1,1, (a2 + 4 )3^ - 1 
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(ii) if m is even, 9^ = 1 mod 4 and (3f
m > 5, 

where °WX = (l, 1, (£„-5) / 4,1,3, ((a2+ 4 ) ^ - 1 ) / 4 ) ; 

(iii) if m is even, 2Fm = 3 mod 4 and 8Fm > 3, 

&(», i») = [(JV -1) / 2, < W ' 2 , 4 ^ , T f 2 , ( a 2 + 4 ) ^ - l 

where <W2 = (l, 1, ( S ^ - 3) / 4,3,1, ((a2 + 4 )3^- 3) / 4); 

fiv) if m is odd, 9m = 1 mod 4 and i^ > 5, 

<3l(n, m) = p - l ) / 2 , =¥3,9m-1, W3, (a2 + 4)3?,,-

where W3 = (2, (2Fm- 5) / 4,1,2,1, ((a2 + 4)9?m- 5) / 4,2); 

fv) if m is odd, 9"w = 2 mod 4 and Fm>6, 

<3t(n, m) = \(N -1) / 2, ̂ , 4(a2 + 4)9^- 2, # 4 , (a2 + 4)9^- 1 

where c F 4 =(2 , (^ w -6) /4 , l ) . 

Since the proof of Theorem 8 involves the same ideas as the proof of Theorem 7, we include 
only the (less complicated) proof of Theorem 7. Before proceeding with the proof of Theorem 7, 
we make three remarks. 

First, it may appear that Theorem 8 is not complete in the sense that three cases seem to be 
missing; in particular, the cases: m even, 9^ = 2 mod 4; m odd, 9^ = 0 mod 4; m odd, 9^ = 3 
mod 4. It is a straightforward calculation to verify that none of these cases can occur when N is 
odd. For example, one has that 9^ = 2 mod 4 only if either a = 1 mod 4 and m = 3 mod 6 or 
a = 3 mod 4 and m = 3 mod 6 or a = 2 mod 4 and w = 2 mod 4. In the first two cases, m is odd, 
and in the third case a is even; thus, N must be even. So if 9^ =2 mod 4, then we cannot have 
both m even and TV odd. Similarly, the other two remaining cases may be shown not to occur. 
Therefore, Theorem 8 gives the complete situation for odd N. Our second remark involves the 
numbers {{a2 + 4)9^-1) / 4, ((a2 + 4)9^- 3) / 4, and ((a2 + 4)9^- 5) / 4 occurring in cases (ii), 
(iii), and (iv), respectively. Of course, we must require that these be integers. It is easy to see 
that each is an integer in the appropriate case if and only if a is odd. However, again, if a were 
even, then N would be even and Theorem 7 would apply. Hence, if TV is odd, then a is also odd; 
there-fore, the three numbers above are indeed integers as required. Third, we note that the 
period length for 2ft(#, m) is either 2, 4, 6, 8, 14, or 16. This proves an observation made by Long 
[2] that the period is always even, but it also shows that the period length is, in fact, a bounded 
fiinc-tion of a, n, and m which Long believed not to be the case. 

Proof of Theorem 7: We consider first the case of m even and let 

a- NI2,9m,{a2+4)®n 

We now examine the corresponding matrix product: 
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<r s\_(N/2 l\(9m lY(a2+4)3^w lY(a2 + 4)%m+a-N/2 1^ 
t u) [ 1 0J{ 1 0 

It follows that a = r 11, in particular, 

a 
_(N&J2 + l)((a2+4)<$m+a-N/2) + N/2 

&m((a2 + 4)($m+a-N/2) + l 

Thus, we have 

9mc? +(®m((a2+4Wm-N/2)-N®J2)a 
+ (N/2f®m- (a2+4)®m-N(a2 + 4)9^/2 = 0 

which, together with our definition of N yields 

a®n + ^((a2+4W2
m+4)(a2+4) 

a = 

As m is even, identity (2.12) becomes (a2 + 4)3^ + 4 = X2
m; hence, a - Sft(w, m). 

If m is odd, we again let 

a = p - 2 ) / 2 , l , ^ - 2 , l , ( a 2 + 4 ) ^ - 2 

and proceed in a similar manner to deduce 

a 
_N-(a2+ 4)gw+ V((a2 + 4)9^2 -4)(a2+4) 

2 
In view of identity (2.12) with m odd, together with the definition of TV, we have a = 9fc(w, m), 
which completes the proof. 

As a consequence of the two previous theorems and a result of Long [2], we are able to 
deduce immediately the continued fraction expansion for numbers of the form 

a£n+2myla2+4 
2 

&)(n,m) = -

Long proved (Theorem 8, [2]) that the continued fraction expansions of 9ft(«, m) and $f(n9 m) are 
identical after the first partial quotient. In view of the two theorems of this section, it appears 
clear that one may explicitly express the continued fraction expansion for 

and, thus, by Theorem 9 of [2], the expansion for 

qgFw + gFlwVa2+4 
2 

It seems very reasonable to conjecture that these period lengths will again be even and bounded. 
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