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INTRODUCTION 

One of the more effective methods of counting residues modulo a prime in the rows of 
Pascal's triangle is a reduction of this problem to that of solving of certain systems of recurrence 
equations. This way was successfully employed by B. A. Bondarenko [1] in the investigation of 
this problem for various values of/? and (only) for certain rows of Pascal's triangle. However, 
some characteristic properties of the matrices of these recurrent systems were noticed which led 
to the idea of/?-latin matrices. This idea was formulated in more detail in [2], which also uses/?-
latin matrices in the investigation of other arithmetic triangles. 

In this paper we consider a new application of the properties of/7-latin matrices to the investi-
gation of Pascal's triangle modulo a prime. Using a representation of the p-latin matrices in a 
convenient basis, we obtain the distribution of Pascal's triangle elements modulo a prime for an 
arbitrary row. 

p -LATIN MATRICES 

We note the definition of a/7-latin matrix as given in [1] and [2]. A square matrix of order n 
is called a "latin square of order «" [3] if its elements take on n values in such a way that each 
value occurs only once in each column and row. A latin square of order n is called a "p-latin 
square of order »" if no diagonals except the main and secondary ones (the element indices are i 
and n-i + l for 1 < /' < n) have equal elements. A/?-latin square of order n is said to be a "nor-
malized p-\atm square of order n" if its first row has the form (1,2,..., n), and the main diagonal 
has the form (1,..., 1). 

We will construct such a matrix for any prime p. 
Let us introduce the matrix P = (Jli). ,=——y of order p-\ whose elements are to be under-

stood as elements from the field 2.p. (Here and later we use the notation /', j = l,p-l to mean 
\<i<p-\,\<j<p-\) 

Example 1: For p = 7, the matrix P has the form: 

P = 

fill 
111 
1/3 
1/4 
1/5 

vl/6 

2/1 
2/2 
2/3 
2/4 
2/5 
2/6 

3/1 
3/2 
3/3 
3/4 
3/5 
3/6 

4/1 
4/2 
4/3 
4/4 
4/5 
4/6 

5/1 
5/2 
5/3 
5/4 
5/5 
5/6 

6/0 
6/2 
6/3 
6/4 
6/5 
6/6 

'1 
4 
5 
2 
3 

2 
1 
3 
4 
6 
5 

6̂  
3 
2 
5 
4 
1 

Theorem 1: Ifp is a prime number, then the matrix P is a normalized/?-latin square. 
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Proof: It is obvious that elements of P occurring in the same row or column are distinct and 
belong to the multiplicative group of the field ~Lp. Thus the matrix P is a latin square. 

Let j/i be one element of some diagonal that is parallel to the main diagonal Then any 
other element of this diagonal has the form (J + s)l (i + s). Assume that these elements are equal; 
then is = js and therefore i = j , so in this case the element j/i has to occur on the main diagonal. 
There is an analogous situation with diagonals parallel to the secondary one. Hence P is ap-latin 
square. Since the first row of P has the form 1,2,..., p -1 and on the main diagonal there are only 
l's, P is a normalizedp4atin square. 

Let us define the set of square matrices of order p-l (called in [2] "normalized pAatin 
matrices"): 

N„ 

where C denotes the complex numbers. 

Example 2: If p = 7, then, according to Example 1, the matrix 

VC6 c3 ^\J 
belongs to M7. 

Though the idea of this set of matrices was contained in [1] and [2], their existence for any p 
was not made explicit. 

Corollary 1: If C, B eNp, then CB eNp and CB = BC. 

Proof: In fact, if C - (cfJ) and B = (buj), then the equality 

(p-l 

v*=i Ji,j=i,p-i Si,J=l,p-l 

where all indices are in Zp, holds. Therefore, if we denote by ak the sum Sfj/ cshk/s, then we will 
have CB = (a7/). =r~^~v hence CB sNp. Moreover, in the same way, we can establish 

Bc=yLhfj*it 
, 5 = 1 

= (aA/-: 1,/7-P 

with the aid of the equality 
p-l 

s=l 

Hence CB = BC, which was to be proved. 
We develop the properties of these matrices from Mp in what follows. 
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Let us denote by A(1) the Pascal triangle modulo a prime p and let C(n, m) be an arbitrary 
element. Let us also denote by A(P the triangle containing only the first s rows of A(1). Now con-
sider the triangle Aw == M(1)

? whose elements Ck(n, m) are defined by the expression Q(w, m) = 
kC(n, m) (mod p) and denote by A(f} the triangle containing only the first s rows of A(/:). It is 
clear that A(,*> = JfcA .̂ 

Definition: The triangle with sm rows arising from A^ by replacing its elements C(n, t) by the 
triangles A^(/l*^ and filling in free places by 0 is denoted by A(^} * Am. 

Example 3: For p = 53 the triangles A*p and A^ have the form 

A<J> = \ \ , Af= 1 1 , 4 2 ) = 2 2 , A(
3
3>= 3 3 , 

1 3 3 1 1 2 1 2 4 2 3 1 3 

and therefore we obtain: 
1 

1 1 
1 2 1 

A (
3

1 } 1 0 0 1 
m m 1 1 0 11 

Ad) A 4 A " 1 2 1 1 2 1 
A 4 * A 3 ~ A(i) A(2) A(i) - 1 0 0 2 0 0 1 

A3 % % 1 1 0 2 2 0 11 
A<i> A(3) A(3) A« 12 12 4 2 1 2 1 

3 3 3 1 0 0 3 0 0 3 0 0 1 
1 1 0 3 3 0 3 3 0 11 

1 2 1 3 1 3 3 1 3 1 2 1 

This leads to the principal fractal property of Pascal's triangle. 

Theorem 2: For any n,m eN and each k = l,p-l,the equality A^ * A „ = A(i)„ holds. 
The proof of this theorem is lengthy but not difficult and is given in [4]. 

This result allows us to reduce an investigation of A(1) to the investigation of M^ for 
k = 1, p -1. The details will be given in Theorem 3. 

Let Bk, 1 < k < p-1, be the matrix of order p-\, any element bt, • of which is the number of 
elements equal to j in the &* row of the triangle A(^. Denote by gf^(n, p) the number of 
elements equal to s modulo/? in the «* row of the triangle A(t). 

Theorem 3: If n = (ar,..., a0)p is the/?-ary representation of n, then 

gf\n,p) = {Bar...BaX, W 
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Proof: Using Theorem.2, we can write the equality 

p P p ? 

which means that the nth row of A(1)
r+1 is found in the a * row of A(J?, which consists of the tri-

angles A1 ;, 1 < k < p - 1 (see Example 3). If we set n(k) = (ar_k, ...3a0), then the following vector 
equality will hold: 

Continuing this process, we can obtain 

(&\n,/Okl^zi = Bar ... 3 ^ > ( « ( r ) , ^ = — . 

Since w(r) = aQ and gf\a0, p) = (Bao)s^k, we get (1). This completes the proof 

Using Theorem 3, we can reduce counting the gf\n, p), where s = l,p-l, to finding a 
product of the matrices Bk. 

Theorem 4: Bk eNp. 

Proof: Let b[k\ ..., b^\ be the elements of the first row of Bk. We will prove the equality 

**=(*£Wr (2) 

We can define the addition of the triangles A(^} as the same operation between corresponding 
elements of A^ in 7Lp. For example, the following equality 

ZA<» = A« (3) 
k=\ 

holds. If we denote the elements of matrix Bk by b$, then, using (3) and the definition ofbff, 
we can write b{k] = b$s for each s = l,p-l. Thus, b$ = b[^n, and hence (2) holds. The proof is 
complete. 

Let nt be the number of elements equal to / in the j?-ary representation of n In the form 
n - (ar,..., a0)p. By (1), using Corollary 1, we can find 

^k)(P9p)JflsA . (4) 
V ' = l Jk,s 

Here the matrix BQ is absent because B0 = diag(l, ...,1) = E. Now, to calculate the value of 
gf\n, p)9 we have to Investigate the further properties of the matrices in Np. 

PROPEETIES OF THE MATRICES FROM Mp 

It is true that Mp is just a subspace of the linear space of square matrices of order p-l. 
Moreover, we have 
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Corollary 2: DimN^ = p -1 and 

5eN,=>a = f;V*, (5) 

where Ik GMp and 4 = (SkiJ\J=:I^rv 

Here St . is Kronecker's symbol and all indices are to be understood as elements from Hp. 
Proof of this property can be obtained directly from the definition of Np. 
Let us verify that the matrices Ik possess the property IkIm =1^. In fact 

Vm ~ 
fp-i \ 

and consequently the element of the matrix IkIm with the indices i andj does not vanish if there 
exists an s so that ki = s and ms- j . Hence j = mki, and therefore IkIm - {Smkij)t . |——x = 1^. 

Let v be the root of the equation xp~l - 1 in the field ~LP, such that for each k = 1, p-2 the 
inequality vk ^ 1 holds. For what follows, it will be convenient to introduce the matrices Jk = 
(Iv)k. If we set ck = byk, then (5) can be written in the form 

B = YckJk. (6) 
k=\ 

Corollary 3: If ju is an eigenvalue of B, then there is a root of the equation zp~l = 1 in C, which 
we denote as A, such that 

^ = l V - (7) 
k=l 

Proof: Let a be some vector from C^-1 and 

Then, employing the equality JJb = Xsb and carrying this out for each s = 1, p -1, we can write 

Bb = PfckJkb = PfckAkb = Mb, 

i.e., ju is an eigenvalue of B. Now it remains to prove that formula (7) gives us all eigenvalues of 
B. We will complete this after Corollary 6. 

As a consequence of Corollary 3, we note that the matrices Ik, and hence the matrices Jk> 

are nonsingular matrices, and V&, detlk =detJk = l. Indeed, since all eigenvalues of Jk are the 
roots of the equation xp~l = 1 (we denote them by Xt\ then we have 

detJ,=n4 = / , 

where ju = Zx... Xp_x. Using the equality EfZi k - 0 (mod/?), we get // = 1, and hence det Jk = 1. 
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As another interesting property of the matrices Ik we note that they are orthogonal matrices, 
namely, IkIl = E, where (aitJ)* = (#/,/) and the bar denotes complex conjugation. This imme-
diately follows from the equality 

have 
Obviously, the matrices Jk possess the same property, but by the equality JkJs = Jk+S we 

/ * _ r - l _ j 
Jk~ Jk - Jp-k-l 

for each k - 1, p - 2. Since Jp_x = E9 we have J*_x = 7 x. 

Corollary 4: Let 5 be in Np and be written in the form (6), then 

(8) 

P~2_ 

B^Ucp-k-A+Cp-i^ 
k=l 

'p-lJp-l • 

Proof: In fact, using (8), we immediately obtain 
p - 2 _ _ P-2_ 

B ~ 2^Ck^k +Cp-\Jp-l ~ 2^Ck^p-k-l+Cp-l^1 'p-Wp-l> 

hence Corollary 4 is true. 
Let us introduce the matrices Sf for / = 1, p -1 in the form 

i P~l 

1 (P-i)h 
(9) 

Here, as before, Xi is one of the roots of the equation xp l = 1 in C. It is clear that, for each 
i = 1, p -1, the matrices Sf belong to Np. 

Let X be a primitive root of the equation xp~l = 1, i.e., for each k = l,p-2, we have Xk * 1. 
Therefore, in formula (9), we can assume that Xt = X1. 

Theorem 5: The following equalities, 
SjSj - SiJSi (10) 

are true for all i,j = l,p-l. 

Proof: Consider the left-hand side of (10). After some calculation, we get 

1 
' ; (P-VI2 

P-l I 2(p-2) p-2 

^=0 k=0 £=p-l k=£-p+2 

whence 

SiSj=~(^¥ ^=0 k=0 £=0 k=£+l 

hence 
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| p-2 p-2 

\P~l) £=0 k=0 

Let us examine this equality. Employing the identity Xi_j - Xi I Aj9 where Xi * Xj (for i ̂  y), 
we obtain 

£2^=.(^-l)/(^y-l) = 0. 
k=0 

Hence (10) holds for i^j. Further, at i = j , we have 

p-2 

lc=Q 

consequently, iSf = Sf, and the proof is complete. 

( i i ) 

The matrices Si &TQ Hermitian, i.e., they possess the property St• = S*. In fact, for i = l,p-l, 
we have 

Let us denote the transposed matrix A = (a .) -.—? by A' = (a,A . -.—T. Then we have 
S{= $p-i-i for / = 1,p-2. This can be proved in the same way as the previous result, but we 
need to keep in mind that J*k - Jk and Xt = Xp_{_x. 

Theorem 6: The equalities 

Jk = *t#lSi,k = Xp=\, (12) 
which are converse to (9), are true. 

Proof: Employing (9)-(l 1) and making some transformations, we get 

i E=} P-I P-\ 
:I4 l-k 

p-\ 

k=\ >-i)S 
Therefore, (12) is true for k = 1. For the completion of the proof, it suffices to note that Jk - J\ 
and to make use of (10). 

Now we must note that the matrix Sp_{ consists only of l's in each place; hence Sp_x = S' x. 
This is clear from the following equalities, 

P-\ p-\ fp-\ \ 
Vi = X Jk = Z 4 H H5ki,jJk 

k=i k=i Kk=i Si,J=l,p-l 

if we bear in mind that, for i,j=l,p-l, 2f=1
! Ski . = 1. 

Corollary 5: Let B eNp, then 

P-\ 
B ~ X MA > where juf are the eigenvalues of B. 

/=! 
368 
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The proof of this Corollary can be obtained without difficulty from (6) by using Theorem 6 
and equality (7). 

Using the basis Sl9..., Sp_u we can easily find the product of matrices from Np. To illustrate 
this statement we prove 

Theorem 7: Let Mi\ ..., M(p-\ be the eigenvalues of the matrices Bt from Theorem 3. If we set 

^=floppy > 04) 
then the equality 

fp-i 
g?\n,p) = 

V= 1 Jk 
(15) 

is true. 
Proof: It is readily seen that, making use of (13) and Theorem 5, we can obtain 

Therefore., equality (4) transforms to (15), and the proof is complete. 

Note that we can also write <r. in the form cr. = f/fr)... f/fo). 

Corollary 6: Any eigenvector bt of the matrix B corresponding to the eigenvalue //,. can be 
written in the form 

4=2>/v> ' (16) 
0) 

where c. e Cp~l and the summation is taken over j satisfying the condition jUj - juf. 

Proof: Let bt be the eigenvector of the matrix B corresponding to the eigenvalue jur Oper-
ating on the equality Bbt = jufy by the matrix Ss, using (13) and Theorem 5, we obtain jusSJ)f -
fjj$sbj. If Mi ^ Ms here, then Ssbf = 0. Now, if we make use of the identity E = St + - • • + Sp_h 

which easily follows from Corollary 5 for B - E, then we get bf = (E(y) S )bf. 
In addition, if c eCp - 1 , then, using the equality BSf = MAC> w e c a n saY ̂ a t the vectors of 

the form Sf are the eigenvectors corresponding to the eigenvalue Mi- Thus (16) is true, and the 
proof is complete. 

Conclusion of the Proof of Corollary 3: Let us take c GCP~1 SO that \/k, Skc ̂  0. This is 
possible, for example, with c = (1, 0,..., 0). We saw above that the vector ck - Skc is the eigen-
vector of the matrix B corresponding to the eigenvalue Mk determined from (7) at X - Xk. We 
claim that the vectors ck (k = l,p-l) are linearly independent. In fact, if there are 5X,..., 
£ ! eC not all zero and such that S& + • • - 4- S^f^ = 0, then operating on this equality by Sk, 
we obtain. Skck = 0 or 8k - 0 for k ~ 1, p -1, which is a contradiction. Thus, the vectors ck for 
k = \,p-\ are the basis in C^-1, and so there are no other eigenvalues of B. Thus, the proof is 
complete. 
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Corollary 7: If //7 ^ 0 for each / = ! , / ? - ! , then the matrix B has an inverse defined by the 
equality 

7 = 1 

To prove this statement, it is sufficient to use the identity E = Sx + • • • + Sp_x again, and to 
employ Theorem 5. 

Now we apply the properties obtained of the matrices from Np to counting gf^in.p) for 
p-1. It should be pointed out that in [5] this problem was considered for p = 3 mdp = 5. 

COUNTING ^ ( # 1 , 7 ) 

To count the value of g^k\n, p) we need, according to Theorem 7, to examine the triangles 
A(7} for k = T~6. The triangle A(

7
1} has the form: 

1 
1 1 

1 2 1 
1 3 3 1 

1 4 6 4 1 
1 5 3 3 5 1 

1 6 1 6 1 6 1 

If we multiply each element of A^ by k in Zp, we will obtain the triangle ^ . For example, 
A(7* has the form: 

3 
3 3 

3 6 3 
3 2 2 3 

3 5 4 5 3 
3 1 2 2 1 3 

3 4 3 4 3 4 3 

Now we need to find the matrices Bk for k = 1,6. Let us take, for instance, the 4th rows of 
triangles A ^ , which give us the matrix B4. The 4th row of triangle A(^ has the form (1,4,6,4,1). 
Since the numbers 1 and 4 occur twice and the number 6 occurs once there, the first row of B4 

has the form (2,0,0,2,0,1). If we want to count the third row of B4 now, we must take the 4th 

row of triangle A^ , which gives us what we desire, i.e., (0,0,2,1,2,0). Thus, we can count all the 
matrices Bk for k = 1,6. To write our calculation, we make use of the matrices Jk (k = 1,6). So 
let us find the matrix Jv In our case, we have v = 3 because, for each k = 1,5, the inequality 
3k ^ 1 (mod 7) is correct. Therefore, 

j 1 = / 3 = 

0 
0 
0 
0 
1 
0 

0 
0 
1 
0 
0 
0 

1 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
1 

0 
0 
0 
1 
0 
0 

0 
1 
0 
0 
0 
0 
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Now we can write 
B0 = J6, Bl = 2J6, B2 = J2+2J6, B3 = 2Jx+2J6y 

B4 = J3 + 2J4 + 2J6, B5 = 2J^2J5^2J6, B6 = 3J3+4J6. 

Let us assume that the number k is contained in the record of (n)7 a total of nk times. Using the 
notation of Theorem 7 and formulas (6) and (7), and keeping in mind that Xk - exp(i£;r/3) (here, 
i2 - -1), we obtain, for each k - 1,6, 

^=2, /42) = 4+2 , ju?) = 2Ak+2, //i4> = 4 + 2 4 + 2 , 
^ = 2 ( ^ + 4 + 1 ) , 46) = 34+4. 

Whence, by (14), 

o"! = 2"'-"H3 +/V3)"2+"3(-/V3)"M"5, 
a2 = 2"' ~"2 (3 -1V3)"2 (1+i V3 )"3 (2+/V3)"4 (2^2 + 2X4 + 2)"5 7"*, 
o-3 = (-l)"'2"'+"53^+^(223 +2)"^, CT6 - 2"'3"M"35"<6"57'\ 

0"4 = ^ 2 > °"5 = ^1> 

where the bar denotes the complex conjugate. To make use of (15), we need the matrices Sk 

(k = 1,6). According to (9), the matrices Sl and S2 have the form 

, 1 
l~6 

' 1 
2 

A2 

\ 
l - i 

A2 

1 

X2 

-1 
K 

K 

1 
-1 
X2 

X2 

A2 

-1 
1 

K 
K 

K 
-1 

xx 
1 

x2 

-1 

^ £,=-

J A2 
22 1 

2 2 

1 A, 

x2 \ 
_1 22 

If we denote the &* row of £3 by (S3)k, then we have 

($s\ = (^3)2 = -(^3)3 = (^3)4 = -(^3)5 = ~ ( ^ ) 6 
-1/6(1,1,-1,1,-1,-1). 

Also, from the general properties of Sj, we find S4 = S2, S5 = S{, S6 = (l)j _j-g. 
Now, from (15), keeping in mind (17), we can obtain what we required, i.e.. 

g^in, 7) = l/6[2Re(ai + a2) + a3 + a6], 
g<P(n, 7) = 1 / 6[2 Re(24o-i + X2a2) + a3 + a6], 
gW(n, 7) - 1 / 6[2 Re(X5at + X4a2) -a3 + a6], 
gW(n, 7) = 1 / 6[2 Re(22o-1 + X4a2) + a3 + a6], 
g«\n, 7) = 1 / 6[2 R e ^ + X2a2) -a3 + a6], 
g2\n, 7) = l / e p R e t - a , + a2)-a3 + a6]. 

(18) 
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Since 2X2 + 2X4 +2 = 0 and 2A3 +2 = 0, we know the equalities obtained are true only if 
n$ = n5 - 0. When n$ ^ 0 and n5 = 0, we must assume that <J3 = 0 in (18), but when n5 ̂  0 and 
n$ - 0, we must assume that a2 = 0. Finally, if Wj =* 0 and w5 ^ 0, then cr2 = a3 = 0. In all other 
cases except those indicated above, we must make use of (17). 

CONCLUSION 

We note here two simple properties of gf\n,p). Consider two rows of Pascal's triangle 
with numbers (n)p and (m)p. First, if (n)p and (m)p contain the same figures excepting zero, then 
gf\nyp)-g^\m,p) for each k and s. Second, if {n)p contains 1 I more than (m)p, then 
g^\n, p) - 2egf\m, p) for each k and s. The latter follows from (4) because Bl = 2E for each 
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