ON THE POSSIBILITY OF PROGRAMMING THE GENERAL 2-BY-2 MATRIX ON THE COMPLEX FIELD

Juan Pla

315 rue de Belleville 75019 Paris, France (Submitted February 1995)

For more than thirty years, several 2-by-2 matrices have been used to discover properties of classical or generalized Fibonacci and Lucas sequences. The references [1]-[6] and their bibliographies provide a few landmarks for this area of study.

However, no one seems to have addressed the following problem: Given a linear secondorder sequence (u_n) defined by an arbitrary recursion on the complex field,

$$u_{n+2} - pu_{n+1} + qu_n = 0, (R1)$$

and arbitrary initial values u_0 and u_1 , is it possible to program the general 2-by-2 matrix on the complex field, that is, to set the entries of

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

in such a way that at least one of the entries of

$$A^n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$$

be u_n for any n > 0?

This could be useful to study the general sequence (u_n) as it was for the classical or generalized Fibonacci and Lucas sequences recently in [5] or [6].

This note proves that the answer to this question with such a general scope is "no," and also shows that by introducing some slight restrictions, it is possible to program A in such a way that both the entries a_n and d_n bear a close relationship to u_n .

Lemma 1: If we set p = a + d and q = ad - bc in (R1), then

$$A^{n} = \begin{pmatrix} \frac{1}{2}L_{n} + \frac{1}{2}(a-d)F_{n} & bF_{n} \\ cF_{n} & \frac{1}{2}L_{n} - \frac{1}{2}(a-d)F_{n} \end{pmatrix},$$
(F1)

 (L_n) and (F_n) being, respectively, the Lucas and the Fibonacci sequences for (R1).

Formula (F1) is easily proved by first showing by induction that

$$A^{n} = \begin{pmatrix} F_{n+1} - dF_{n} & bF_{n} \\ cF_{n} & F_{n+1} - aF_{n} \end{pmatrix}$$

and then using $L_n = 2F_{n+1} - pF_n = 2F_{n+1} - (a+d)F_n$ to obtain the form (F1).

Obviously, when considered as functions of n, all the entries are sequences satisfying (R1). From this formula, it is clear that:

1. whatever the coefficients p and q, we can always find a, b, c, and d as to obtain p = a + dand q = ad - bc. In fact, there are infinitely many solutions for a, b, c, and d;

[NOV.

2. we cannot obtain at will an arbitrary sequence for the entries (b_n) or (c_n) , since they must be proportional to the Fibonacci sequence for (R1);

In the remainder of this paper, we shall assume that p and q are arbitrarily chosen. As for the other entries, we have

Lemma 2: If (u_n) is a sequence satisfying (R1) and such that $u_0 \neq 0$, and if a, b, c, and d satisfy the following equalities,

$$a = u_1 / u_0, \quad d = p - a, \quad bc = ad - q,$$
 (E)

then for any n > 0 we have the formula:

$$A^{n} = \begin{pmatrix} \frac{u_{n}}{u_{0}} & bF_{n} \\ cF_{n} & L_{n} - \frac{u_{n}}{u_{0}} \end{pmatrix}.$$
 (F2)

Proof: The proof is necessary only for a_n since, for the other entries, the result will be the consequence of (F1). Since both (a_n) and $(u_n)/u_0$ satisfy (R1), it is sufficient to show that they coincide for two consecutive values of n. For n = 1, they coincide by construction. For n = 2, we have $a_2 = a^2 + bc = a^2 + a(p-a) - q = pa - q$; but since $a = u_1/u_0$, we find by applying (R1) that $a_2 = u_2/u_0$. Q.E.D.

For a given recurrence (R1) and a given sequence (u_n) satisfying the conditions for the theorem, there are infinitely many corresponding matrices A since b and c are required only to satisfy bc = ad - q.

We could also have programmed d_n similarly by exchanging a and d in the above set of equalities (E).

These results may be summarized into the following theorem, which is the main aim of this paper.

Theorem 1:

(a) Let (R1) be the general second-order linear recurrence on the complex field, $u_{n+2} - pu_{n+1} + qu_n = 0$, and (u_n) any sequence satisfying (R1) and such that $u_0 \neq 0$. Then a necessary and sufficient condition for all the entries of A^n considered as functions of n > 0 to satisfy (R1) and for the entry (a_n) to be $(u_n)/u_0$ for any n > 0 is that

$$a = u_1 / u_0, \quad d = p - a, \quad bc = ad - q.$$

(b) The other entries of A^n are then determined, once b and c have been individually chosen in accordance with the above equalities, by

$$b_n = bF_n$$
, $c_n = cF_n$, $d_n = L_n - u_n / u_0$,

where L_n and F_n are, respectively, the generalized Lucas and Fibonacci sequences of (R1).

APPLICATIONS

As applications of (F2), we shall derive two formulas concerning the general sequence (u_n) satisfying (R1).

1996]

1. Separation of variables for u_{m+n} .

By writing that for any positive integers m and n, $A^{m+n} = A^m A^n$, and by equating the upper left entries on both sides, we obtain $u_0 u_{m+n} = u_m u_n + (u_0)^2 b c F_m F_n$.

By taking m = n = 1, we get $(u_0)^2 bc = u_0 u_2 - (u_1)^2$ and the formula

$$u_0 u_{m+n} = u_m u_n + \{u_0 u_2 - (u_1)^2\} F_m F_n.$$
(F3)

This formula has the following applications to the study of the sequence of the residues of (u_n) modulo a prime when u_n is an integer for any $n \ge 0$.

Let us assume that D is a positive prime that divides $u_0u_2 - (u_1)^2$. Then D also divides $u_0u_{m+n} - u_mu_n$ for any m and $n \ge 0$, and therefore divides $u_0u_{n+1} - u_1u_n$ for any $n \ge 0$. Now define the T transformation as: $T(u_n) = u_0u_{n+1} - u_1u_n$ for any n. Then, by iterating this transformation D-1 times, we shall prove the following theorem by exactly the same method as in [7].

Theorem 2: If D is a positive prime that divides $u_0u_2 - (u_1)^2$ and is relatively prime to u_0 , then the sequence of the residues of (u_n) modulo D is either constant or periodic with period D-1.

Thanks to the formula, $u_{n+m+1} = u_{n+1}F_{m+1} - qu_nF_m$ (which can be proved by an easy recursion), and using the method of the iterated T transformation given above, we can prove

Theorem 3: If D is a positive prime that divides F_m , then the sequence of the residues of (u_n) modulo D is either constant or periodic with period m(D-1).

This latter property is shared by any sequence of integers satisfying (R1), since we made no assumption on the values of any u_n , which was not the case for the former property. So there exist at least two kinds of periods for the sequences of the residues of (u_n) modulo a given prime: the **universal** periods depending only on the value of the prime and which exist for any (u_n) , and **particular** periods depending also on the initial values of the sequence considered. For instance, if (L_n) and (F_n) are the classical Lucas and Fibonacci sequences, the shortest period modulo 5 for (L_n) is 4, in accordance with the fact that $L_0L_2 - (L_1)^2 = 5$, while the shortest period modulo 5 for (F_n) is 20, this number also being a period [not necessarily the shortest one, as shown by (L_n)] for any sequence (u_n) , in accordance with the fact that for m = 5 we have D = 5 as divisor of F_m and that m(D-1) = 20 in that case.

2. Since the n^{th} power of the determinant of a square matrix is the determinant of its n^{th} power, and the determinant of A is q, we obtain, from (F2):

$$\{u_0u_2 - (u_1)^2\}(F_n)^2 + (u_n)^2 + q^n(u_0)^2 = u_0u_nL_n.$$
(F4)

This proves, for instance, that if, for any $n \ge 0$, all the sequences involved in this formula are made up of integers, and if, for a given *n*, the integer *D* divides both u_0 and F_n , then it also divides u_n . Since, for any integer $m \ge 1$, F_n divides F_{mn} , *D* also divides F_{mn} and therefore u_{mn} .

Theorem 4: Any divisor D of u_0 generates a sequence of zero residues of $(u_n) \mod D$ with a period equal to the entry point of D in (F_n) .

[This does not mean that all the zero residues of $(u_n) \mod D$ are located in this sequence.]

[NOV.

Formula (F4) also shows that any common divisor of $u_0u_2 - (u_1)^2$ and u_n , if also relatively prime to u_0 , is a divisor of q. Therefore, if $q = \pm 1$ for any $n \ge 0$, $u_0u_2 - (u_1)^2$ and u_n are either prime to each other or share a common divisor with u_0 . Then if (L_n) is the generalized Lucas sequence of (R1), since we have $L_0L_2 - (L_1)^2 = \Delta$ = the discriminant of (R1), and $L_0 = 2$ always, we can state the next theorem.

Theorem 5: If $q = \pm 1$ for any $n \ge 0$, then L_n is relatively prime to the discriminant of its recursion (R1), provided that this discriminant is odd.

This generalizes the well-known property of the classical Lucas sequence regarding 5.

REFERENCES

- 1. E. P. Miles, Jr. "Generalized Fibonacci Numbers and Associated Matrices." *Amer. Math. Monthly* **67.8** (1960):745-52.
- 2. P. Filipponi & A. F. Horadam. "A Matrix Approach of Certain Identities." *The Fibonacci Quarterly* 26.2 (1988):232-42.
- 3. A. F. Horadam & P. Filipponi. "Cholesky Algorithm Matrices of Fibonacci Type and Properties of Generalized Sequences." *The Fibonacci Quarterly* **29.2** (1991):164-73.
- G. E. Bergum, Larry Bennett, A. F. Horadam, & S. D. Moore. "Jacobsthal Polynomials and a Conjecture Concerning Fibonacci-Like Matrices." *The Fibonacci Quarterly* 23.3 (1985): 240-48.
- 5. P. Filipponi. "Waring's Formula, the Binomial Formula, and Generalized Fibonacci Matrices." *The Fibonacci Quarterly* **30.3** (1992):225-31.
- 6. C. A. Reiter. "Fibonacci Numbers: Reduction Formula and Short Periods." *The Fibonacci Quarterly* **31.4** (1993):315-23.
- 7. J. Pla. "Some Conditions for 'All or None' Divisibility of a Class of Fibonacci-Like Sequences." *The Fibonacci Quarterly* **33.5** (1995):464-65.

AMS Classification Numbers: 11B39, 11C20

*** *** ***

1996]