ALGORITHMIC MANIPULATION OF THIRD-ORDER LINEAR RECURRENCES

Stamley Rabinowitz
MathPro Press, 12 Vine Brook Road, Westford, MA 01886
email: stan@mathpro.com
(Submitted March 1995)

1. INTRODUCTION

In [12] we showed how to algorithmically prove all polynomial identities involving a certain class of elements from second-order linear recurrences with constant coefficients. In this paper, we attempt to extend these results to third-order linear recurrences.

Let $\left\langle S_{n}\right\rangle$ be a sequence defined by the third-order linear recurrence

$$
\begin{equation*}
S_{n}=p S_{n-1}+q S_{n-2}+r S_{n-3} \tag{1}
\end{equation*}
$$

where $r \neq 0$. We will consider three special such sequences, $\left\langle X_{n}\right\rangle,\left\langle Y_{n}\right\rangle$, and $\left\langle Z_{n}\right\rangle$, given by the following initial conditions:

$$
\begin{align*}
X_{0} & =0, & X_{1} & =0, & X_{2} & =1 ; \\
Y_{0} & =0, & Y_{1} & =1, & Y_{2} & =0 ; \tag{2}\\
Z_{0} & =1, & Z_{1} & =0, & Z_{2} & =0 .
\end{align*}
$$

These initial conditions were chosen so that the three sequences form a basis for the set of all third-order linear recurrences with constant coefficients, and because they will allow us (in a future paper) to generalize our results to higher-order recurrences. These three sequences also have nice Binet forms.

Given any sequence $\left\langle S_{n}\right\rangle$ that satisfies recurrence (1), we can write its elements as a linear combination of X_{n}, Y_{n}, and Z_{n}, namely,

$$
\begin{equation*}
S_{n}=S_{2} X_{n}+S_{1} Y_{n}+S_{0} Z_{n} . \tag{3}
\end{equation*}
$$

Thus, it suffices to show that we can algorithmically prove any identity involving X_{n}, Y_{n}, and Z_{n}.
The sequence $\left\langle S_{n}\right\rangle$ can be defined for negative values of n by using recurrence (1) to extend the sequence backwards or, equivalently, by using the recurrence

$$
\begin{equation*}
S_{-n}=\left(-q S_{-n+1}-p S_{-n+2}+S_{-n+3}\right) / r \tag{4}
\end{equation*}
$$

A short table of values for X_{n}, Y_{n}, and Z_{n} for small values of n is given below:

n	-2	-1	0	1	2	3	4	5
X_{n}	$-q / r^{2}$	$1 / r$	0	0	1	p	$p^{2}+q$	$p^{3}+2 p q+r$
Y_{n}	$(p q+r) / r^{2}$	$-p / r$	0	1	0	q	$p q+r$	$p^{2} q+p r+q^{2}$
Z_{n}	$\left(q^{2}-p r\right) / r^{2}$	$-q / r$	1	0	0	r	$p r$	$r\left(p^{2}+q\right)$

The characteristic equation for recurrence (1) is

$$
\begin{equation*}
x^{3}-p x^{2}-q x-r=0 . \tag{5}
\end{equation*}
$$

Let the roots of this equation be r_{1}, r_{2}, and r_{3}, which we shall assume are distinct. The condition that these roots are distinct is that Δ, the discriminant, is nonzero. That is,

$$
\begin{equation*}
\Delta^{2}=\left(r_{1}-r_{2}\right)^{2}\left(r_{2}-r_{3}\right)^{2}\left(r_{3}-r_{1}\right)^{2}=p^{2} q^{2}-27 r^{2}+4 q^{3}-4 p^{3} r-18 p q r>0 . \tag{6}
\end{equation*}
$$

The Binet forms for our sequences are given by:

$$
\begin{align*}
X_{n} & =A_{1} r_{1}^{n}+B_{1} r_{2}^{n}+C_{1} r_{3}^{n}, \\
Y_{n} & =A_{2} r_{1}^{n}+B_{2} r_{2}^{n}+C_{2} r_{3}^{n}, \tag{7}\\
Z_{n} & =A_{3} r_{1}^{n}+B_{3} r_{2}^{n}+C_{3} r_{3}^{n},
\end{align*}
$$

where

$$
\begin{array}{lll}
A_{1}=\frac{1}{\left(r_{1}-r_{2}\right)\left(r_{1}-r_{3}\right)}, & B_{1}=\frac{1}{\left(r_{2}-r_{3}\right)\left(r_{2}-r_{1}\right)}, & C_{1}=\frac{1}{\left(r_{3}-r_{1}\right)\left(r_{3}-r_{2}\right)} ; \\
A_{2}=\frac{-\left(r_{2}+r_{3}\right)}{\left(r_{1}-r_{2}\right)\left(r_{1}-r_{3}\right)}, & B_{2}=\frac{-\left(r_{3}+r_{1}\right)}{\left(r_{2}-r_{3}\right)\left(r_{2}-r_{1}\right)}, & C_{2}=\frac{-\left(r_{1}+r_{2}\right)}{\left(r_{3}-r_{1}\right)\left(r_{3}-r_{2}\right)} ; \tag{8}\\
A_{3}=\frac{r_{2} r_{3}}{\left(r_{1}-r_{2}\right)\left(r_{1}-r_{3}\right)}, & B_{3}=\frac{r_{3} r_{1}}{\left(r_{2}-r_{3}\right)\left(r_{2}-r_{1}\right)}, & C_{3}=\frac{r_{1} r_{2}}{\left(r_{3}-r_{1}\right)\left(r_{3}-r_{2}\right)} .
\end{array}
$$

Another sequence of interest is

$$
W_{n}=X_{n+2}+Y_{n+1}+Z_{n}=p X_{n+1}+2 q X_{n}+3 r X_{n-1}=\left(p^{2}+2 q\right) X_{n}+p Y_{n}+3 Z_{n}
$$

because W_{n} has the Binet form

$$
\begin{equation*}
W_{n}=r_{1}^{n}+r_{2}^{n}+r_{3}^{n} . \tag{9}
\end{equation*}
$$

We can solve the equations in (7) for the r_{i}^{n}. We get

$$
\begin{align*}
& r_{1}^{n}=r_{1}^{2} X_{n}+r_{1} Y_{n}+Z_{n}, \\
& r_{2}^{n}=r_{2}^{2} X_{n}+r_{2} Y_{n}+Z_{n}, \tag{10}\\
& r_{3}^{n}=r_{3}^{2} X_{n}+r_{3} Y_{n}+Z_{n} .
\end{align*}
$$

This idea was suggested by Murray Klamkin. It also follows from Lemma 1 of [11]. These equations let us convert an expression involving powers of r_{i}, where a variable n occurs in the exponents, to expressions involving X_{n}, Y_{n}, and Z_{n}.

From the relationship between the roots and coefficients of a cubic, we have

$$
\begin{align*}
r_{1}+r_{2}+r_{3} & =p, \\
r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1} & =-q, \tag{11}\\
r_{1} r_{2} r_{3} & =r .
\end{align*}
$$

Thus, any symmetric polynomial involving r_{1}, r_{2}, and r_{3} can be expressed in terms of p, q, and r. An algorithmic method (Waring's Algorithm) for performing this transformation can be found on page 14 in [5].

An explicit formula for X_{n} in terms of p, q, and r was given in [13], namely,

$$
X_{n+2}=\sum_{a+2 b+3 c=n}\left(\begin{array}{cc}
a+b+c \tag{12}\\
a & b
\end{array}\right) p^{a} q^{b} r^{c} .
$$

Similar formulas for Y_{n} and Z_{n} can be obtained from the fact that $Y_{n}=X_{n+1}-p X_{n}$ and $Z_{n}=r X_{n-1}$.
Matrix formulations were given in [17] and [20]:

$$
\begin{align*}
& \left(\begin{array}{c}
S_{n+2} \\
S_{n+1} \\
S_{n}
\end{array}\right)=\left(\begin{array}{lll}
p & q & r \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)^{n}\left(\begin{array}{l}
S_{2} \\
S_{1} \\
S_{0}
\end{array}\right), \tag{13}\\
& \left(\begin{array}{c}
X_{n} \\
Y_{n} \\
Z_{n}
\end{array}\right)=\left(\begin{array}{lll}
p & 1 & 0 \\
q & 0 & 1 \\
r & 0 & 0
\end{array}\right)^{n-2}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \tag{14}
\end{align*}
$$

and

$$
\left(\begin{array}{ccc}
X_{n+2} & Y_{n+2} & Z_{n+2} \tag{15}\\
X_{n+1} & Y_{n+1} & Z_{n+1} \\
X_{n} & Y_{n} & Z_{n}
\end{array}\right)=\left(\begin{array}{ccc}
p & q & r \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)^{n} .
$$

2. THE BASIC ALGORITHMS

Algorithm "TribEvaluate"

Given an integer constant n, to evaluate X_{n}, Y_{n}, or Z_{n} numerically, apply the following algorithm:

Step 1. [Make subscript positive.] If $n<0$, apply Algorithm "TribNegate" given below.
Step 2. [Recurse.] If $n>2$, apply the recursion: $S_{n}=p S_{n-1}+q S_{n-2}+r S_{n-3}$. This reduces the subscript by 1 , so the recursion must eventually terminate. If n is 0,1 , or 2 , use the values in display (2).

Note: While this may not be the fastest way to evaluate X_{n}, Y_{n}, and Z_{n}, it is nevertheless an effective algorithm.

The key idea to algorithmically proving identities involving polynomials in $X_{a n+b}, Y_{a n+b}$, and $Z_{a n+b}$ is to first reduce them to polynomials in X_{n}, Y_{n}, and Z_{n}. To do that, we need reduction formulas for X_{m+n}, Y_{m+n}, and Z_{m+n}. Such formulas can be obtained from equations (7), (8), (10), and (11).

From (10), we can compute r_{i}^{n+m} by multiplying together r_{i}^{n} and r_{i}^{m}. Then (7) gives us X_{m+n}. Therefore, $X_{n+m}=A_{1}\left(r_{1}^{2} X_{n}+r_{1} Y_{n}+Z_{n}\right)\left(r_{1}^{2} X_{m}+r_{1} Y_{m}+Z_{m}\right)+B_{1}\left(r_{2}^{2} X_{n}+r_{2} Y_{n}+Z_{n}\right)\left(r_{2}^{2} X_{m}+r_{2} Y_{m}+Z_{m}\right)+$ $C_{1}\left(r_{3}^{2} X_{n}+r_{3} Y_{n}+Z_{n}\right)\left(r_{3}^{2} X_{m}+r_{3} Y_{m}+Z_{m}\right)$. Substituting in the values of the A_{1}, B_{1}, and C_{1} from (8) gives us an expression that is symmetric in r_{1}, r_{2}, and r_{3}. Applying Waring's Algorithm allows us to express this in terms of p, q, and r using (11). We can do the same for Y_{n+m} and Z_{n+m}. The results obtained are given by the following algorithm.

Algorithm "TribReduce" To Remove Sums in Subscripts

Use the identities

$$
\begin{align*}
X_{m+n} & =\left(p^{2}+q\right) X_{m} X_{n}+p\left(X_{n} Y_{m}+X_{m} Y_{n}\right)+X_{n} Z_{m}+X_{m} Z_{n}+Y_{m} Y_{n} \\
Y_{m+n} & =(p q+r) X_{m} X_{n}+q\left(X_{n} Y_{m}+X_{m} Y_{n}\right)+Y_{n} Z_{m}+Y_{m} Z_{n} \tag{16}\\
Z_{m+n} & =p r X_{m} X_{n}+r\left(X_{n} Y_{m}+X_{m} Y_{n}\right)+Z_{m} Z_{n}
\end{align*}
$$

These are also known as the addition formulas.
From the table of initial values, we find that the reduction formulas can also be written in the form

$$
\begin{align*}
X_{m+n} & =X_{4} X_{m} X_{n}+X_{3}\left(X_{n} Y_{m}+X_{m} Y_{n}\right)+X_{n} Z_{m}+X_{m} Z_{n}+Y_{m} Y_{n} \\
Y_{m+n} & =Y_{4} X_{m} X_{n}+Y_{3}\left(X_{n} Y_{m}+X_{m} Y_{n}\right)+Y_{n} Z_{m}+Y_{m} Z_{n} \tag{17}\\
Z_{m+n} & =Z_{4} X_{m} X_{n}+Z_{3}\left(X_{n} Y_{m}+X_{m} Y_{n}\right)+Z_{m} Z_{n}
\end{align*}
$$

The matrix formulation is

$$
X_{m+n}=\left(\begin{array}{c}
X_{m} \tag{18}\\
Y_{m} \\
Z_{m}
\end{array}\right)^{\mathrm{T}}\left(\begin{array}{lll}
X_{4} & X_{3} & X_{2} \\
X_{3} & X_{2} & X_{1} \\
X_{2} & X_{1} & X_{0}
\end{array}\right)\left(\begin{array}{c}
X_{n} \\
Y_{n} \\
Z_{n}
\end{array}\right)
$$

with similar expressions for Y_{m+n} and Z_{m+n}.
If we allow subscripts on the right other than " n " and " m ", simpler forms of the reduction formula can be found. For example, [18] gives the following:

$$
\begin{equation*}
S_{n+m}=X_{m} S_{n+2}+Y_{m} S_{n+1}+Z_{m} S_{n} \tag{19}
\end{equation*}
$$

Similar expressions can be found in [7] and [17]. In matrix form, they can be expressed as

$$
\left(\begin{array}{l}
S_{n+m} \tag{20}\\
S_{n+m-1} \\
S_{n+m-2}
\end{array}\right)=\left(\begin{array}{lll}
X_{m+1} & Y_{m+1} & Z_{m+1} \\
X_{m} & Y_{m} & Z_{m} \\
X_{m-1} & Y_{m-1} & Z_{m-1}
\end{array}\right)\left(\begin{array}{l}
S_{n+1} \\
S_{n} \\
S_{n-1}
\end{array}\right)
$$

These formulations come from [18] and [20].
Algorithm "TribReduce" allows us to replace any term of the form $S_{a n+b}$, where a and b are positive integers by terms of the form S_{n}. To allow a and b to be negative integers as well, we can also use equation (16); however, then we will obtain expressions of the form S_{-n}. Since we would like to express these in the form S_{n}, we must find formulas for S_{-n}. The same procedure we used before works again. For example, from (10), we can compute r_{i}^{-n} as $1 / r_{i}^{n}$. Equation (7) then gives $X_{-n}=A_{1} /\left(r_{1}^{2} X_{n}+r_{1} Y_{n}+Z_{n}\right)+B_{1} /\left(r_{2}^{2} X_{n}+r_{2} Y_{n}+Z_{n}\right)+C_{1} /\left(r_{3}^{2} X_{n}+r_{3} Y_{n}+Z_{n}\right)$. Again we apply Waring's Algorithm and we get the following result.

Algorithm "TribNegate" To Remove Negative Subscripts

Use the identities

$$
\begin{align*}
X_{-n} & =\frac{p X_{n} Y_{n}-q X_{n}^{2}+Y_{n}^{2}-X_{n} Z_{n}}{r^{n}} \\
Y_{-n} & =\frac{(p q+r) X_{n}^{2}-p^{2} X_{n} Y_{n}-p Y_{n}^{2}-Y_{n} Z_{n}}{r^{n}} \tag{21}\\
Z_{-n} & =\frac{\left(q^{2}-p r\right) X_{n}^{2}-(p q+r) X_{n} Y_{n}-q Y_{n}^{2}+\left(p^{2}+2 q\right) X_{n} Z_{n}+p Y_{n} Z_{n}+Z_{n}^{2}}{r^{n}}
\end{align*}
$$

If we allow subscripts on the right other than " n ", simpler forms can be found. For example,

$$
\begin{align*}
X_{-n} & =\left(X_{n+1} Y_{n}-X_{n} Y_{n+1}\right) / r^{n} \\
Y_{-n} & =\left(X_{n} Y_{n+2}-X_{n+2} Y_{n}\right) / r^{n} \tag{22}\\
Z_{-n} & =\left(X_{n+2} Y_{n+1}-X_{n+1} Y_{n+2}\right) / r^{n}
\end{align*}
$$

3. THE FUNDAMENTAL IDENTITY CONNECTING X, Y, AND Z

The Fibonacci and Lucas numbers are connected by the fundamental identity

$$
\begin{equation*}
L_{n}^{2}=5 F_{n}^{2}+4(-1)^{n} . \tag{23}
\end{equation*}
$$

Furthermore, it can be shown that, if $f\left(F_{n}, L_{n}\right)$ is any nonconstant polynomial [with coefficients that are constants or of the form $\left.(-1)^{n}\right]$ that is 0 for all integral values of n, then this polynomial must be divisible by $L_{n}^{2}-5 F_{n}^{2}-4(-1)^{n}$. That is, (23) is the unique identity connecting F_{n} and L_{n}.

A similar result holds for arbitrary second-order linear recurrences. For third-order linear recurrences, we believe there is also exactly one fundamental identity connecting X_{n}, Y_{n}, and Z_{n}. In this section, we will find such an identity, but we do not prove that this identity is unique.

To obtain an identity connecting X_{n}, Y_{n}, and Z_{n}, we can multiply together the equations in display (10). The result is a symmetric polynomial in r_{1}, r_{2}, and r_{3} and can thus be expressed in terms of p, q, and r. The result is the following.

The Fundamental Identity:

$$
\begin{align*}
r^{n}=r^{2} X_{n}^{3} & +r Y_{n}^{3}+Z_{n}^{3}+\left(q^{2}-2 p r\right) X_{n}^{2} Z_{n}-q r X_{n}^{2} Y_{n}+p r X_{n} Y_{n}^{2} \tag{24}\\
& +\left(p^{2}+2 q\right) X_{n} Z_{n}^{2}-q Y_{n}^{2} Z_{n}+p Y_{n} Z_{n}^{2}-(p q+3 r) X_{n} Y_{n} Z_{n} .
\end{align*}
$$

If we allow subscripts on the right other than " n ", simpler forms of the fundamental identity can be found. For example, [15] gives the following equivalent formulation:

$$
\left|\begin{array}{ccc}
X_{n+2} & X_{n+1} & X_{n} \tag{25}\\
Y_{n+2} & Y_{n+1} & Y_{n} \\
Z_{n+2} & Z_{n+1} & Z_{n}
\end{array}\right|=r^{n} .
$$

4. THE SIMPLIFICATION ALGORITHM

Let us be given a polynomial function of elements of the form X_{w}, Y_{w}, and Z_{w}, where the subscripts of X, Y, and Z are of the form $a_{1} n_{1}+a_{2} n_{2}+\cdots+a_{k} n_{k}+b$, where b and the a_{i} are integer constants and the n_{i} are variables. To put this expression in "canonical form," we apply the following algorithm.

Algorithm "TribSimplify" To Transform an Expression to Canonical Form

Step 1. [Remove sums in subscripts.] Apply Algorithm "TribReduce" to remove any sums (or differences) in subscripts.

Step 2. [Make multipliers positive.] All subscripts are now of the form $c n$, where c is an integer. For any term in which the multiplier c is negative, apply Algorithm "TribNegate".

Step 3. [Remove multipliers.] All subscripts are now of the form c, where c is a positive integer. For any term in which the multiplier c is not 1 , apply Algorithm "TribReduce" successively until all subscripts are variables.

Step 4. [Remove powers of Z.] If any term involves an expression of the form Z_{n}^{k}, where $k>2$, reduce the exponent by 1 by replacing Z_{n}^{3} by its equivalent value as given by the fundamental identity (24), namely,

$$
\begin{align*}
Z_{n}^{3}=r^{n} & -r^{2} X_{n}^{3}-r Y_{n}^{3}-\left(q^{2}-2 p r\right) X_{n}^{2} Z_{n}+q r X_{n}^{2} Y_{n}-p r X_{n} Y_{n}^{2} \tag{26}\\
& -\left(p^{2}+2 q\right) X_{n} Z_{n}^{2}+q Y_{n}^{2} Z_{n}-p Y_{n} Z_{n}^{2}+(p q+3 r) X_{n} Y_{n} Z_{n}
\end{align*}
$$

Continue doing this until no Z_{n} term has an exponent larger than 2 .

Proving Identities

To prove that an expression is identically 0, it suffices to apply Algorithm "TribSimplify". If the resulting canonical form is 0 , then the expression is identically 0 . We believe that the converse is true as well; that is, an expression is identically 0 if and only if Algorithm "TribSimplify" transforms it to 0 . A formal proof can probably be given along the lines of [18]; however, we do not do so. Suffice it to say that Algorithm "TribSimplify" was checked on about 100 identities culled from the literature and it worked every time. A selection of these identities is given in the appendix. See also [6] for a related algorithm for trigonometric polynomials.

5. OTHER ALGORITHMS

These algorithms can be verified by applying Algorithm "TribSimplify."

Algorithm "ConvertToX" To Change Y 's and Z 's to X 's

Use the identities

$$
\begin{align*}
& Y_{n}=-p X_{n}+X_{n+1} \tag{27}\\
& Z_{n}=r X_{n-1}
\end{align*}
$$

Algorithm "ConvertToY" To Change Z 's and X 's to Y 's

Use the identities

$$
\begin{align*}
Z_{n} & =\left(r Y_{n+1}-q r Y_{n-1}\right) /(p q+r) \\
X_{n} & =\left(p Y_{n+1}+r Y_{n-1}\right) /(p q+r) \tag{28}
\end{align*}
$$

Algorithm "ConvertToZ" To Change X 's and Y 's to Z 's

Use the identities

$$
\begin{align*}
X_{n} & =Z_{n+1} / r \tag{29}\\
Y_{n} & =Z_{n-1}+q Z_{n} / r
\end{align*}
$$

Algorithm "Removepqr" To Remove $p^{\prime} s, q$, s, and $r^{\prime} s$

Use the identities

$$
\begin{align*}
p & =\left(X_{n+1}-Y_{n}\right) / X_{n} \\
q & =\left(Y_{n+1}-Z_{n}\right) / X_{n} \tag{30}\\
r & =Z_{n+1} / X_{n}
\end{align*}
$$

Algorithm "TribShiftDown1" To Decrease a Subscript by 1

Use the identities

$$
\begin{align*}
X_{n+1} & =p X_{n}+Y_{n}, \\
Y_{n+1} & =q X_{n}+Z_{n}, \tag{31}\\
Z_{n+1} & =r X_{n} .
\end{align*}
$$

These can be found in [10].

Algorithm "TribShiftUp1" To Increase a Subscript by 1

Use the identities

$$
\begin{align*}
X_{n-1} & =Z_{n} / r \\
Y_{n-1} & =X_{n}-p Z_{n} / r \tag{32}\\
Z_{n-1} & =Y_{n}-q Z_{n} / r
\end{align*}
$$

Subtraction Formulas

Use the identities

$$
\begin{align*}
X_{m-n}= & \left(r X_{n}\left(X_{n} Y_{m}-X_{m} Y_{n}\right)-\left(q X_{n}+Z_{n}\right)\left(X_{n} Z_{m}-X_{m} Z_{n}\right)\right. \\
& \left.\quad\left(p X_{n}+Y_{n}\right)\left(Y_{n} Z_{m}-Y_{m} Z_{n}\right)\right) / r^{n}, \\
Y_{m-n}= & \left(r\left(p X_{n}+Y_{n}\right)\left(X_{m} Y_{n}-X_{n} Y_{m}\right)+(p q+r) X_{n}\left(X_{n} Z_{m}-X_{m} Z_{n}\right)\right. \\
\quad & \left.\quad\left(p(p+1) X_{n}-Z_{n}\right)\left(Y_{n} Z_{m}-Y_{m} Z_{n}\right)\right) / r^{n}, \tag{33}\\
Z_{m-n}= & \left(r^{2} X_{m} X_{n}^{2}-q r X_{n}^{2} Y_{m}+p r X_{n} Y_{m} Y_{n}+r Y_{m} Y_{n}^{2}+q^{2} X_{n}^{2} Z_{m}-p r X_{n}^{2} Z_{m}\right. \\
\quad & \quad-p q X_{n} Y_{n} Z_{m}-r X_{n} Y_{n} Z_{m}-q Y_{n}^{2} Z_{m}-p r X_{m} X_{n} Z_{n}-r X_{n} Y_{m} Z_{n} \\
\quad & \left.\quad r X_{m} Y_{n} Z_{n}+p^{2} X_{n} Z_{m} Z_{n}+2 q X_{n} Z_{m} Z_{n}+p Y_{n} Z_{m} Z_{n}+Z_{m} Z_{n}^{2}\right) / r^{n} .
\end{align*}
$$

If we allow subscripts on the right other than simple variables, simpler subtraction formulas can be found. For example, [2] gives the following equivalent formulation:

$$
\begin{align*}
X_{m-n} & =\left|\begin{array}{ccc}
Z_{m} & Y_{m} & X_{m} \\
Z_{n} & Y_{n} & X_{n} \\
Z_{n+1} & Y_{n+1} & X_{n+1}
\end{array}\right| / r^{n}, \\
Y_{m-n} & =\left|\begin{array}{ccc}
Z_{m} & Y_{m} & X_{m} \\
Z_{n} & Y_{n} & X_{n} \\
Z_{n+2} & Y_{n+2} & X_{n+2}
\end{array}\right| / r^{n}, \tag{34}\\
Z_{m-n} & =\left|\begin{array}{ccc}
Z_{m} & Y_{m} & X_{m} \\
Z_{n+1} & Y_{n+1} & X_{n+1} \\
Z_{n+2} & Y_{n+2} & X_{n+2}
\end{array}\right| / r^{n}
\end{align*}
$$

Double Argument Formulas

Letting $m=n$ in equation (16) gives us the following:

$$
\begin{align*}
X_{2 n} & =\left(p^{2}+q\right) X_{n}^{2}+2 p X_{n} Y_{n}+Y_{n}^{2}+2 X_{n} Z_{n}, \\
Y_{2 n} & =(p q+r) X_{n}^{2}+2 q X_{n} Y_{n}+2 Y_{n} Z_{n}, \tag{35}\\
Z_{2 n} & =p r X_{n}^{2}+2 r X_{n} Y_{n}+Z_{n}^{2} .
\end{align*}
$$

To Remove Scalar Multiples of Arguments in Subscripts
An expression of the form $S_{k n}$, where k is a positive integer, can be thought of as being of the form $S_{n+n+\cdots+n}$, where there are k terms in the subscript. This can be expanded out in terms of S_{n} by $k-1$ repeated applications of the reduction formula (16). For example, for $k=3$, we get the following identities:

$$
\begin{aligned}
X_{3 n}= & \left(p^{4}+3 p^{2} q+q^{2}+2 p r\right) X_{n}^{3}+3\left(p^{3}+2 p q+r\right) X_{n}^{2} Y_{n}+3\left(p^{2}+q\right) X_{n} Y_{n}^{2} \\
& \quad+p Y_{n}^{3}+3\left(p^{2}+q\right) X_{n}^{2} Z_{n}+6 p X_{n} Y_{n} Z_{n}+3 Y_{n}^{2} Z_{n}+3 X_{n} Z_{n}^{2} \\
Y_{3 n}=\left(p^{3} q\right. & \left.+2 p q^{2}+p^{2} r+2 q r\right) X_{n}^{3}+3\left(p^{2} q+q^{2}+p r\right) X_{n}^{2} Y_{n}+3(p q+r) X_{n} Y_{n}^{2} \\
& +q Y_{n}^{3}+3(p q+r) X_{n}^{2} Z_{n}+6 q X_{n} Y_{n} Z_{n}+3 Y_{n} Z_{n}^{2} \\
Z_{3 n}= & \left(p^{3} r\right. \\
& \left.+2 p q r+r^{2}\right) X_{n}^{3}+3 r\left(p^{2}+q\right) X_{n}^{2} Y_{n}+3 p r X_{n} Y_{n}^{2}+r Y_{n}^{3} \\
\quad & +3 p r X_{n}^{2} Z_{n}+6 r X_{n} Y_{n} Z_{n}+Z_{n}^{3} .
\end{aligned}
$$

In general, we have

$$
S_{k n}=\sum_{a+b+c=k}\left(\begin{array}{ccc}
& k & \tag{36}\\
a & b & c
\end{array}\right) S_{2 a+b} X_{n}^{a} Y_{n}^{b} Z_{n}^{c}
$$

where $\left(\begin{array}{lll}k & k & \\ a & b & c\end{array}\right)$ denotes the trinomial coefficient $\frac{k!}{a!b!c!}$. Formula (36) can be proven by induction on k.

CHANGE OF BASIS (Shift Formulas)

Algorithm "TribShift" To Transform an Expression Involving

X_{n}, Y_{n}, Z_{n} Into One Involving $X_{n+a}, Y_{n+b}, Z_{n+c}$
Use identities such as

$$
X_{n}=\frac{1}{D}\left(\left|\begin{array}{cc}
q X_{b}+Z_{b} & Y_{b} \\
r X_{c} & Z_{c}
\end{array}\right| X_{n+a}-\left|\begin{array}{cc}
p X_{a}+Y_{a} & X_{a} \\
r X_{c} & Z_{c}
\end{array}\right| Y_{n+b}+\left|\begin{array}{cc}
p X_{a}+Y_{a} & X_{a} \\
q X_{b}+Z_{b} & Y_{b}
\end{array}\right| Z_{n+c}\right)
$$

where

$$
D=\left|\begin{array}{ccc}
\left(p^{2}+q\right) X_{a}+p Y_{a}+Z_{a} & p X_{a}+Y_{a} & X_{a} \tag{37}\\
(p q+r) X_{b}+q Y_{b} & q X_{b}+Z_{b} & Y_{b} \\
p r X_{c}+r Y_{c} & r X_{c} & Z_{c}
\end{array}\right|,
$$

which can be obtained by solving the linear equations

$$
\begin{aligned}
X_{n+a} & =\left(p^{2}+q\right) X_{a} X_{n}+p\left(X_{n} Y_{a}+X_{a} Y_{n}\right)+X_{n} Z_{a}+X_{a} Z_{n}+Y_{a} Y_{n} \\
Y_{n+b} & =(p q+r) X_{b} X_{n}+q\left(X_{n} Y_{b}+X_{b} Y_{n}\right)+Y_{n} Z_{b}+Y_{b} Z_{n} \\
Z_{n+c} & =p r X_{c} X_{n}+r\left(X_{n} Y_{c}+X_{c} Y_{n}\right)+Z_{c} Z_{n}
\end{aligned}
$$

for X_{n}, Y_{n}, and Z_{n}.
One can change from the basis $\left(X_{n}, Y_{n}, Z_{n}\right)$ to the basis $\left(X_{n+a}, X_{n+b}, X_{n+c}\right)$ in a similar manner. Other combinations can be found in the same way. To change from one arbitrary basis to another, apply Algorithm "TribReduce" to transform the given expression to the basis (X_{n}, Y_{n}, Z_{n}). Then use one of the above formulas.

6. TURNING SQUARES INTO SUMS

For Lucas numbers, there is the well-known formula,

$$
\begin{equation*}
L_{n}^{2}=L_{2 n}-2(-1)^{n}, \tag{38}
\end{equation*}
$$

which allows us to replace the square of a term with a sum of terms. To find an analog for thirdorder recurrences, we can proceed as follows.

Combining equations (21) and (35) gives us six equations in the six variables $X_{n} Y_{n}, Y_{n} Z_{n}$, $X_{n} Z_{n}, X_{n}^{2}, Y_{n}^{2}$, and Z_{n}^{2}. We can then solve these equations for X_{n}^{2}, Y_{n}^{2}, and Z_{n}^{2} in terms of $X_{2 n}$, $Y_{2 n}, Z_{2 n}, X_{-n}, Y_{-n}$, and Z_{-n}. We get the following (computer-generated) result.

Algorithm "TribExpandSquares" To Turn Squares into Sums

$$
\begin{align*}
d X_{n}^{2}=r^{n}[& \left.2\left(p^{4}+5 p^{2} q+4 q^{2}+6 p r\right) X_{-n}+2\left(p^{3}+4 p q+9 r\right) Y_{-n}+2\left(p^{2}+3 q\right) Z_{-n}\right] \\
& +2\left(3 p r-q^{2}\right) X_{2 n}+(p q+9 r) Y_{2 n}-2\left(p^{2}+3 q\right) Z_{2 n}, \tag{39}\\
d Y_{n}^{2}=r^{n}[& 2\left(p^{6}+6 p^{4} q+8 p^{2} q^{2}+8 p^{3} r+16 p q r+9 r^{2}\right) X_{-n} \\
& \left.+2\left(p^{5}+5 p^{3} q+4 p q^{2}+7 p^{2} r+3 q r\right) Y_{-n}+2\left(p^{4}+4 p^{2} q+q^{2}+6 p r\right) Z_{-n}\right] \\
& +\left(9 r^{2}-p^{2} q^{2}-2 q^{3}+2 p^{3} r+4 p q r\right) X_{2 n}+\left(p^{3} q+3 p q^{2}+p^{2} r+3 q r\right) Y_{2 n} \tag{40}\\
& -2\left(p^{4}+4 p^{2} q+q^{2}+6 p r\right) Z_{2 n}, \\
d Z_{n}^{2}=r^{n}[& 2 r\left(p^{5}+6 p^{3} q+8 p q^{2}+7 p^{2} r+12 q r\right) X_{-n}+2 r\left(p^{4}+5 p^{2} q+4 q^{2}+6 p r\right) Y_{-n} \\
& \left.+2 r\left(p^{3}+4 p q+9 r\right) Z_{-n}\right]-2 r^{2}\left(p^{2}+3 q\right) X_{2 n}+r\left(p^{2} q+4 q^{2}-3 p r\right) Y_{2 n} \tag{41}\\
& +\left(9 r^{2}-p^{2} q^{2}-4 q^{3}+2 p^{3} r+10 p q r\right) Z_{2 n},
\end{align*}
$$

where $d=27 r^{2}-p^{2} q^{2}-4 q^{3}+4 p^{3} r+18 p q r$.
These formulas are a bit outrageous. Are there any simpler formulas? Can these be put in simpler form? To be more specific, we ask the following.

Query: Is there a simpler formula than formula (41) that allows us to express Z_{n}^{2} as a linear combination of terms, each of the form $X_{a n+b}, Y_{a n+b}$, or $Z_{a n+b}$? The coefficients may include the constants p, q, and r as well as the nonlinear expression r^{n}.

7. TURNING PRODUCTS INTO SIMPLER PRODUCTS

For Lucas numbers, there is the well-known formula,

$$
\begin{equation*}
L_{m} L_{n}=L_{m+n}+(-1)^{n} L_{m-n}, \tag{42}
\end{equation*}
$$

which allows us to turn products into sums. For third-order recurrences, there probably is no corresponding formula. However, there is a formula that allows us to turn products of three or more terms into sums of products consisting of just two terms.

To find a formula for $X_{m} X_{n} X_{s}$, we can proceed as follows. From equation (7), we have

$$
X_{m} X_{n} X_{s}=\left(A_{1} r_{1}^{m}+A_{2} r_{2}^{m}+A_{3} r_{3}^{m}\right)\left(A_{1} r_{1}^{n}+A_{2} r_{2}^{n}+A_{2} r_{3}^{n}\right)\left(A_{1} r_{1}^{s}+A_{2} r_{2}^{s}+A_{3} r_{3}^{s}\right)
$$

After expanding this out, replace any term of the form $r_{1}^{a} r_{2}^{b} r_{3}^{c}$ (with $a, b, c>0$) by $r^{s} r_{1}^{a-s} r_{2}^{b-s} r_{3}^{c-s}$, which is equivalent because $r_{1} r_{2} r_{3}=r$. Since one of a, b, or c is equal to s, this substitution turns this term into one involving the product of only two powers of the r_{i}. Use equation (10) to convert powers of r_{1}, r_{2}, and r_{3} back to expressions involving X, Y, and Z. Then use Waring's Algorithm and equations (8) and (11) to replace $A_{1}, A_{2}, A_{3}, r_{1}, r_{2}$, and r_{3} by p, q, and r. We get the following (computer-generated) result.

$$
\begin{aligned}
X_{m} X_{n} X_{s}= & {\left[-c_{8} X_{m+n} X_{s}-c_{8} X_{n} X_{m+s}-c_{8} X_{m} X_{n+s}+c_{6} X_{m+n+s}-c_{7} X_{n+s} Y_{m}\right.} \\
& -c_{7} X_{m+s} Y_{n}-c_{3} X_{s} Y_{m+n}-c_{7} X_{m+n} Y_{s}-c_{6} Y_{m+n} Y_{s}-c_{3} X_{n} Y_{m+s} \\
& -c_{6} Y_{n} Y_{m+s}-c_{3} X_{m} Y_{n+s}-c_{6} Y_{m} Y_{n+s}-c_{5} Y_{m+n+s}-c_{6} X_{n+s} Z_{m} \\
& +c_{5} Y_{n+s} Z_{m}-c_{6} X_{m+s} Z_{n}+c_{5} Y_{m+s} Z_{n}-c_{2} X_{s} Z_{m+n}+c_{5} Y_{s} Z_{m+n} \\
& -c_{6} X_{m+n} Z_{s}+c_{5} Y_{m+n} Z_{s}+3 c_{1} Z_{m+n} Z_{s}-c_{2} X_{n} Z_{m+s}+c_{5} Y_{n} Z_{m+s} \\
& +3 c_{1} Z_{n} Z_{m+s}-c_{2} X_{m} Z_{n+s}+c_{5} Y_{m} Z_{n+s}+3 c_{1} Z_{m} Z_{n+s} \\
& -3 c_{1} Z_{m+n+s}-r^{s}\left(-2 c_{8} X_{m-s} X_{n-s}+c_{9} X_{n-s} Y_{m-s}\right. \\
& +c_{9} X_{m-s} Y_{n-s}-2 c_{6} Y_{m-s} Y_{n-s}+2 c_{4} X_{n-s} Z_{m-s}+2 c_{5} Y_{n-s} Z_{m-s} \\
& \left.\left.+2 c_{4} X_{m-s} Z_{n-s}+2 c_{5} Y_{m-s} Z_{n-s}+6 c_{1} Z_{m-s} Z_{n-s}\right)\right] / d^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& c_{1}=p^{2} q^{2}+4 q^{3}-4 p^{3} r-18 p q r-27 r^{2} \\
& c_{2}=-2 p^{4} q^{2}-13 p^{2} q^{3}-20 q^{4}+8 p^{5} r+56 p^{3} q r+90 p q^{2} r+54 p^{2} r^{2}+135 q r^{2}, \\
& c_{3}=p^{3} q^{3}+4 p q^{4}-4 p^{4} q r-12 p^{2} q^{2} r+24 q^{3} r-24 p^{3} r^{2}-135 p q r^{2}-162 r^{3} \\
& c_{4}=p^{4} q^{2}+6 p^{2} q^{3}+8 p^{4}-4 p^{5} r-27 p^{3} q r-36 p q^{2} r-27 p^{2} r^{2}-54 q r^{2} \\
& c_{5}=p c_{1} \\
& c_{6}=q c_{1} \\
& c_{7}=-3 c_{1} r \\
& c_{8}=-p^{2} q^{4}-4 q^{5}+6 p^{3} q^{2} r+26 p q^{3} r-8 p^{4} r^{2}-36 p^{2} q r^{2}+27 q^{2} r^{2}-54 p r^{3} \\
& c_{9}=-p^{3} q^{3}-4 p q^{4}+4 p^{4} q r+15 p^{2} q^{2} r-12 q^{3} r+12 p^{3} r^{2}+81 p q r^{2}+81 r^{3}
\end{aligned}
$$

and

$$
d=27 r^{2}-p^{2} q^{2}-4 q^{3}+4 p^{3} r+18 p q r
$$

These formulas can be simplified. Using the first formula in display (16), we can remove any terms of the form $Y_{m} Y_{n}$. Using the second formula in display (16), we can remove any terms of the form $Y_{n} Z_{m}+Y_{m} Z_{n}$. Using the third formula in display (16), we can remove any terms of the form $Z_{m} Z_{n}$. Upon doing this, we get the following:

$$
\begin{align*}
d X_{m} X_{n} X_{s}= & 2\left(q^{2}-3 p r\right)\left[X_{s} X_{m+n}+X_{n} X_{s+m}+X_{m} X_{n+s}-2 r^{s} X_{m-s} X_{n-s}\right] \\
& -2 q\left[X_{m+n+s}-r^{s} X_{m+n-2 s}\right]+2 p\left[Y_{m+n+s}-r^{s} Y_{m+n-2 s}\right]+6\left[Z_{m+n+s}-r^{s} Z_{m+n-2 s}\right] \tag{43}\\
& -(p q+9 r)\left[X_{s} Y_{m+n}+X_{n} Y_{s+m}+X_{m} Y_{n+s}-r^{s}\left(X_{m-s} Y_{n-s}+X_{n-s} Y_{m-s}\right)\right] \\
& +2\left(p^{2}+3 q\right)\left[X_{s} Z_{m+n}+X_{n} Z_{s+m}+X_{m} Z_{n+s}-r^{s}\left(X_{m-s} Z_{n-s}+X_{n-s} Z_{m-s}\right)\right]
\end{align*}
$$

This can also be expressed in the following form:

Algorithm "TribShortenProducts" To Turn Products of Many Terms into Products of Two Terms

$$
\begin{align*}
X_{m} X_{n} X_{s}=[& X_{s} C_{m+n}+X_{n} C_{s+m}+X_{m} C_{n+s}-r^{s}\left(X_{m-s} C_{n-s}+X_{n-s} C_{m-s}\right) \\
& \left.-2 q X_{m+n+s}+2 p Y_{m+n+s}+6 Z_{m+n+s}-r^{s}\left(-2 q X_{m+n-2 s}+2 p Y_{m+n-2 s}+6 Z_{m+n-2 s}\right)\right] / d \tag{44}
\end{align*}
$$

where $d=27 r^{2}-p^{2} q^{2}-4 q^{3}+4 p^{3} r+18 p q r$ and

$$
C_{n}=2\left(q^{2}-3 p r\right) X_{n}-(p q+9 r) Y_{n}+2\left(p^{2}+3 q\right) Z_{n}
$$

For products of three terms not all involving X^{\prime}, first apply Algorithm "ConvertToX", formula (27), to change any Y or Z terms to X terms. For products of more than three terms, this procedure can be repeated, three terms at a time, until only products of two terms remain.

Formula (44) is still pretty messy. Can it be simplified? Can it be made to look symmetric under permutations of (m, n, s) ?

8. SIMSON'S FORMULA

For Fibonacci numbers, there is the well-known Simson formula, $F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n}$. This can be written in the form

$$
\left|\begin{array}{cc}
F_{n+1} & F_{n} \tag{45}\\
F_{n} & F_{n-1}
\end{array}\right|=-(-1)^{n-1}
$$

The generalization of this to third-order recurrences is

$$
\left|\begin{array}{ccc}
X_{n+2} & X_{n+1} & X_{n} \tag{46}\\
X_{n+1} & X_{n} & X_{n-1} \\
X_{n} & X_{n-1} & X_{n-2}
\end{array}\right|=-r^{n-2}
$$

which can be further generalized to

$$
\left|\begin{array}{ccc}
S_{n+4} & S_{n+3} & S_{n+2} \tag{47}\\
S_{n+3} & S_{n+2} & S_{n+1} \\
S_{n+2} & S_{n+1} & S_{n}
\end{array}\right|=r^{n}\left|\begin{array}{ccc}
S_{4} & S_{3} & S_{2} \\
S_{3} & S_{2} & S_{1} \\
S_{2} & S_{1} & S_{0}
\end{array}\right|
$$

These formulas come from [15].

9. SUMMATIONS

We can perform indefinite summations of expressions involving X_{n}, Y_{n}, and Z_{n} any time we can perform such summations with a^{n} instead since, by (7), these terms are actually exponentials with bases r_{1}, r_{2}, and r_{3}.

First, the expression is converted to exponential form using equation (7). Then it is summed. The result is converted back to $X \mathrm{~s}, Y \mathrm{~s}$, and $Z \mathrm{~s}$ by using equation (10). Then r_{1}, r_{2}, and r_{3} are converted to p, q, and r using equation (11). The following summations were found using this method.

$$
\begin{align*}
& \sum_{k=1}^{n} x^{k} X_{k}=\frac{-x^{2}+x^{n+1}\left(X_{n+1}+x Y_{n+1}+x^{2} Z_{n+1}\right)}{-1+p x+q x^{2}+r x^{3}} \tag{48}\\
& \sum_{k=0}^{n} X_{a k+b}= {\left[\left(Y_{a+b}-Y_{(n+1) a+b}\right)\left\{r X_{a}^{2}+\left(p X_{a}+Y_{a}\right)\left(Z_{a}-1\right)\right\}\right.} \\
&+\left(X_{a+b}-X_{(n+1) a+b}\right)\left\{\left(Z_{a}-1\right)^{2}-r Z_{a} Y_{a}\right. \\
&\left.+q X_{a}\left(Z_{a}-1\right)\right\}+\left(Z_{a+b}-Z_{(n+1) a+b}\right)\left\{\left(p X_{a}+Y_{a}\right) Y_{a}-q X_{a}^{2}\right. \tag{49}\\
&\left.\left.-X_{a}\left(Z_{a}-1\right)\right\}\right] /\left[r^{2} X_{a}^{3}+r I_{a}^{2}+\left(Z_{a}-1\right)^{3}-q Y_{a}^{2}\left(Z_{a}-1\right)\right. \\
&+X_{a}^{2}\left(\left(q^{2}-2 p r\right)\left(Z_{a}-1\right)-q r Y_{a}\right)+p Y_{a}\left(Z_{a}-1\right)^{2} \\
&\left.+X_{a}\left(\left(p^{2}+2 q\right)\left(Z_{a}-1\right)^{2}+p r Y_{a}^{2}-Y_{a}(p q+3 r)\left(Z_{a}-1\right)\right)\right]
\end{align*}
$$

$$
\begin{align*}
\sum_{k=1}^{n} k X_{k}= & {\left[2-p+r-(n+1)(2 r+q+1) X_{n+1}+n(2 r+q+1) X_{n+2}\right.} \\
& +(n+1)(p-r-2) Y_{n+1}-n(p-r-2) Y_{n+2} \tag{50}\\
& \left.+(n+1)(2 p+q-3) Z_{n+1}-n(2 p+q-3) Z_{n+2}\right] /(p+q+r-1)^{2}, \\
\sum_{k=1}^{n} k^{2} X_{k}= & {\left[\left(1+3 q-p q+7 r-3 p r+r^{2}\right)\left\{-(n+1)^{2} X_{n+1}+\left(2 n^{2}+2 n-1\right) X_{n+2}-n^{2} X_{n+3}\right\}\right.} \\
& +\left(3-3 p+p^{2}+q+6 r-3 p r-q r\right)\left\{-(n+1)^{2} Y_{n+1}+\left(2 n^{2}+2 n-1\right) Y_{n+2}-n^{2} Y_{n+3}\right\} \tag{51}\\
& +\left(6-8 p+3 p^{2}-3 q+3 p q+q^{2}+3 r-p r\right)\left\{-(n+1)^{2} Z_{n+1}\right. \\
& \left.\left.+\left(2 n^{2}+2 n-1\right) Z_{n+2}-n^{2} Z_{n+3}\right\}\right] /(p+q+r-1)^{3}, \\
\sum_{k=0}^{n} X_{k} X_{n-k}= & {\left[-(n+1) p r X_{n}+(9 r-n p q-3 n r) X_{n+1}+q(n-1) X_{n+2}-3 r(n+1) Y_{n}\right.} \\
& +\left(n p^{2}-p^{2}-3 q+n q\right) Y_{n+1}-p(n-1) Y_{n+2}+(n+1)\left(p^{2}+4 q\right) Z_{n} \tag{52}\\
& \left.+2 n p Z_{n+1}-3(n-1) Z_{n+2}\right] /\left(p^{2} q^{2}+4 q^{3}-27 r^{2}-4 p^{3} r-18 p q r\right) .
\end{align*}
$$

Most of the above formulas are special cases of formula (5.2) in [22].

10. THE TRIBONACCI SEQUENCE

The Tribonacci sequence, $\left\langle T_{n}\right\rangle$, may be defined by

$$
\begin{equation*}
T_{n}=T_{n-1}+T_{n-2}+T_{n-3}, \tag{53}
\end{equation*}
$$

with initial conditions $T_{0}=0, T_{1}=1$, and $T_{2}=1$. A basis can be formed from $\left(T_{n}, T_{n+1}, T_{n+2}\right)$.
For this sequence, we have $T_{n}=X_{n+1}$ with $p=q=r=1$. To convert $X \mathrm{~s}, Y \mathrm{~s}$, and $Z \mathrm{~s}$ to $T \mathrm{~s}$, use the identities

$$
\begin{align*}
X_{n} & =T_{n+2}-T_{n+1}-T_{n}, \\
Y_{n} & =2 T_{n}+T_{n+1}-T_{n+2}, \tag{54}\\
Z_{n} & =2 T_{n+1}-T_{n+2} .
\end{align*}
$$

The reduction formulas are

$$
\begin{gather*}
T_{n+m}=T_{n}\left(2 T_{m+1}-T_{m+2}\right)+T_{n+1}\left(2 T_{m}+T_{m+1}-T_{m+2}\right) \\
-T_{n+2}\left(T_{m}+T_{m+1}-T_{m+2}\right) \tag{55}
\end{gather*}
$$

and

$$
\begin{align*}
T_{n-m}= & T_{n}\left(T_{m+1}^{2}-T_{m} T_{m+2}\right)+T_{n+1}\left(T_{m+2}^{2}-T_{m} T_{m+1}-T_{m+2} T_{m}-T_{m+2} T_{m+1}\right) \\
& +T_{n+2}\left(T_{m}^{2}+T_{m} T_{m+1}+T_{m+1}^{2}-T_{m+1} T_{m+2}\right) \tag{56}
\end{align*}
$$

A form of the addition formula was first found by Agronomof in 1914 [1].
The double argument formula is

$$
\begin{equation*}
T_{2 n}=T_{n+2}^{2}+T_{n+1}^{2}+4 T_{n} T_{n+1}-2 T_{n} T_{n+2}-2 T_{n+1} T_{n+2} \tag{57}
\end{equation*}
$$

A form of this can also be found in [1].
The negation formula is

$$
\begin{equation*}
T_{-n}=T_{n+2}^{2}+T_{n+1}^{2}+T_{n}^{2}-T_{n+2}\left(2 T_{n+1}+T_{n}\right) \tag{58}
\end{equation*}
$$

The fundamental identity connecting T_{n}, T_{n+1}, and T_{n+2} is

$$
\begin{equation*}
T_{n}^{3}+2 T_{n+1}^{3}+T_{n+2}^{3}+2 T_{n} T_{n+1}\left(T_{n}+T_{n+1}\right)+T_{n} T_{n+2}\left(T_{n}-T_{n+2}-2 T_{n+1}\right)-2 T_{n+1} T_{n+2}^{2}=1 \tag{59}
\end{equation*}
$$

The formula to expand squares is

$$
\begin{equation*}
T_{n}^{2}=\left(5 T_{2 n+2}-3 T_{2 n+1}-4 T_{2 n}+4 T_{-n}+10 T_{-n-1}-2 T_{-n-2}\right) / 22 . \tag{60}
\end{equation*}
$$

The analog of Simson's formula is

$$
\left|\begin{array}{ccc}
T_{n+2} & T_{n+1} & T_{n} \tag{61}\\
T_{n+1} & T_{n} & T_{n-1} \\
T_{n} & T_{n-1} & T_{n-2}
\end{array}\right|=-1,
$$

which was found by Miles [9] along with generalizations to higher-order recurrences.
Miles [9] also generalized the relationship between Fibonacci numbers and binomial coefficients from Pascal's triangle,

$$
F_{n+1}=\sum_{a+2 b=n}\binom{a+b}{a}
$$

to the following formula which relates Tribonacci numbers and trinomial coefficients from Pascal's pyramid:

$$
T_{n+1}=\sum_{a+2 b+3 c=n}\left(\begin{array}{cc}
a+b+c \tag{62}\\
a & b
\end{array}\right) .
$$

The following summation was found using the methods of Section 9:

$$
\begin{equation*}
\sum_{k=1}^{n} T_{k}^{2}=\left[1+4 T_{n} T_{n+1}-\left(T_{n+1}-T_{n-1}\right)^{2}\right] / 4 . \tag{63}
\end{equation*}
$$

APPENDIX 1: SELECTED IDENTITIES

We now present some selected identities culled from the literature. All these identities were successfully checked by Algorithm "TribSimplify". Recall that W_{n} is defined by equation (9).

The following six identities come from Jarden [7]:

$$
\begin{gathered}
S_{n+m}=r X_{m} S_{n-1}+X_{m+1}\left(S_{n+1}-p S_{n}\right)+X_{m+2} S_{n}, \\
X_{2 n}=\left(2 r X_{n-1}+q X_{n}\right) X_{n}+X_{n+1}^{2}, \\
X_{2 n+1}=r X_{n}^{2}+\left(2 X_{n+2}-p X_{n+1}\right) X_{n+1}, \\
X_{2 n}=X_{n} W_{n}+r^{n} X_{-n}, \\
W_{2 n}=W_{n}^{2}-2 r^{n} W_{-n}, \\
X_{2 n+1}=X_{n+1} W_{n}+r^{n} X_{1-n} .
\end{gathered}
$$

The following three identities come from Yalavigi [21]:

$$
\begin{gathered}
2 W_{3 n}=W_{n}\left(3 W_{2 n}-W_{n}^{2}\right)+6 r^{n}, \\
W_{4 n}=W_{n} W_{3 n}-W_{2 n}\left(W_{n}^{2}-W_{2 n}\right) / 2+r^{n} W_{n}, \\
W_{4 n+4 m}-W_{4 n}=W_{n+m} W_{3 n+3 m}-W_{n} W_{3 n}-W_{2 n+2 m}\left(W_{n+m}^{2}-2 W_{2 n+2 m}\right) / 2 \\
+W_{2 n}\left(W_{n}^{2}-2 W_{2 n}\right) / 2+r^{n}\left(W_{n+m}-W_{n}\right) .
\end{gathered}
$$

The following three identities come from Yalavigi [20]:

$$
\begin{gathered}
S_{m+n}=X_{m+2} S_{n}+Y_{m+2} S_{n-1}+Z_{m+2} S_{n-2} \\
S_{2 n}=X_{n+2} S_{n}+Y_{n+2} S_{n-1}+Z_{n+2} S_{n-2} \\
S_{m+n}=X_{m+h+2} S_{n-h}+Y_{m+h+2} S_{n-h-1}+Z_{m+h+2} S_{n-h-2}
\end{gathered}
$$

The following two identities come from Shannon and Horadam [14]:

$$
\begin{aligned}
\left(S_{n} S_{n+4}\right)^{2}+\left(2\left(S_{n+1}+S_{n+2}\right) S_{n+3}\right)^{2} & =\left(S_{n}^{2}+2\left(S_{n+1}+S_{n+2}\right) S_{n+3}\right)^{2} \\
4\left(S_{n+2} S_{n-1}-S_{n+2}^{2}\right) & =S_{n-1}^{2}-S_{n+3}^{2}
\end{aligned}
$$

The following identity comes from Shannon and Horadam [15]:

$$
Y_{n}=q X_{n-1}+r X_{n-2}
$$

The following ten identities come from Carlitz [4] (both ρ_{n} and σ_{n} satisfy third-order linear recurrences with $r=1$ and the same p and q with initial conditions $\rho_{0}=1, \rho_{1}=\rho_{2}=0, \sigma_{0}=3$, $\sigma_{1}=p, \sigma_{2}=p^{2}+2 q$. In particular, with $r=1$, we have $\sigma_{n}=W_{n}$ and $\rho_{n}=Z_{n}$):

$$
\begin{gathered}
2 \rho_{m} \rho_{n}-\rho_{m+1} \rho_{n-1}-\rho_{m-1} \rho_{n+1}=\sigma_{m-3} \sigma_{n-3}-\sigma_{m+n-6}-\sigma_{m-3} \rho_{m-3}-\sigma_{n-3} \rho_{m-3}+2 \rho_{m+n-6} \\
\sigma_{m+3 n}-\sigma_{m+2 n} \sigma_{n}+\sigma_{m+n} \sigma_{-n}-\sigma_{m}=0 \\
\sigma_{2 n}=\sigma_{n}^{2}-2 \sigma_{-n} \\
\sigma_{3 n}=\sigma_{n}^{3}-3 \sigma_{n} \sigma_{-n}+3 \\
\rho_{n}^{2}-\rho_{n+1} \rho_{n-1}=\rho_{3-n} \\
\rho_{n}^{2}-\rho_{n+1} \rho_{n-1}=\rho_{2 n-6}-\rho_{n-3} \sigma_{n-3}+\sigma_{3-n} \\
\rho_{m} \sigma_{n}=\rho_{m+n}+\rho_{m-n} \sigma_{-n}-\rho_{m-2 n} \\
\sigma_{m} \sigma_{n}=\sigma_{m+n}+\sigma_{m-n} \sigma_{-n}-\sigma_{m-2 n} \\
\rho_{2 n}=\rho_{n} \sigma_{n}-\sigma_{-n}+\rho_{-n} \\
\rho_{3 n}=\rho_{n} \sigma_{n}^{2}-\sigma_{n} \sigma_{-n}+\rho_{-n} \sigma_{n}-\rho_{n} \sigma_{-n}+1
\end{gathered}
$$

The following nine identities come from Waddill [17] (in their notation, $U_{n}=X_{n+1}$):

$$
\begin{gathered}
S_{n+m}=U_{n-k} S_{m+k+1}+Y_{n-k+1} S_{m+k}+r U_{n-k-1} S_{m+k-1}, \\
S_{n+m}=U_{m-k} S_{n+k+1}+Y_{m-k+1} S_{n+k}+r U_{m-k-1} S_{n+k-1}, \\
S_{n}^{2}+q S_{n-1}^{2}+2 r S_{n-1} S_{n-2}=S_{2} S_{2 n-2}+\left(q S_{1}+r S_{0}\right) S_{2 n-3}+r S_{1} S_{2 n-4} \\
U_{2 n-1}=U_{n}^{2}+q U_{n-1}^{2}+2 r U_{n-1} U_{n-2}, \\
U_{2 n-1}=U_{n+1} U_{n-1}+r U_{n-1} U_{n-2}+U_{n}^{2}-p U_{n} U_{n-1}, \\
q U_{2 n-1}=U_{n+1}^{2}-p U_{n+1} U_{n}+(r-p q) U_{n} U_{n-1}+q U_{n}^{2}-p r\left(U_{n} U_{n-2}+U_{n-1}^{2}\right) \\
-q r U_{n-1} U_{n-2}-r^{2}\left(U_{n-1} U_{n-3}+U_{n-2}^{2}\right), \\
U_{3 n-1}=U_{n-1}\left(U_{n+1}^{2}+Y_{n+2} U_{n}+r U_{n-1} U_{n}\right)+Y_{n}\left(U_{n} U_{n+1}+Y_{n+1} U_{n}+r U_{n-1}^{2}\right) \\
\quad+r U_{n-2}\left(U_{n-1} U_{n+1}+Y_{n} U_{n}+r U_{n-2} U_{n-1}\right),
\end{gathered}
$$

$$
\begin{gathered}
\left|\begin{array}{ccc}
S_{n+m+h} & S_{n+j+h} & S_{n+h} \\
S_{n+m+k} & S_{n+j+k} & S_{n+k} \\
S_{n+m} & S_{n+j} & S_{n}
\end{array}\right|=r^{n}\left|\begin{array}{cc}
U_{h n-1} & U_{h} \\
U_{k-1} & U_{k}
\end{array}\right| \cdot\left|\begin{array}{ccc}
S_{m+2} & S_{m+1} & S_{m} \\
S_{j+2} & S_{j+1} & S_{j} \\
S_{2} & S_{1} & S_{0}
\end{array}\right|, \\
\left|\begin{array}{ccc}
S_{5 n} & S_{4 n} & S_{3 n} \\
S_{4 n} & S_{3 n} & S_{2 n} \\
S_{3 n} & S_{2 n} & S_{n}
\end{array}\right|=r^{n}\left|\begin{array}{cc}
U_{2 n-1} & U_{2 n} \\
U_{n-1} & U_{n}
\end{array}\right| \cdot\left|\begin{array}{ccc}
S_{2 n+2} & S_{2 n+1} & S_{2 n} \\
S_{n+2} & S_{n+1} & S_{n} \\
S_{2} & S_{1} & S_{0}
\end{array}\right| .
\end{gathered}
$$

The following five identities were found by Zeitlin [23]:

$$
\begin{gathered}
S_{n+6}^{2}=\left(p^{2}+q\right) S_{n+5}^{2}+\left(q^{2}+q p^{2}+r p\right) S_{n+4}^{2}+\left(2 r^{2}+r p^{3}+4 p q r-q^{3}\right) S_{n+3}^{2} \\
+\left(r^{2} p^{2}-r p q^{2}-r^{2} q\right) S_{n+2}^{2}+\left(r^{2} q^{2}-r^{3} p\right) S_{n+1}^{2}-r^{4} S_{n}^{2}, \\
S_{2 n+6}-\left(p^{2}+2 q\right) S_{2 n+4}+\left(q^{2}-2 r p\right) S_{2 n+2}-r^{2} S_{2 n}=0, \\
r^{n} S_{-n}=S_{0}\left(W_{n}^{2}-W_{2 n}\right) / 2-W_{n} S_{n}+S_{2 n}, \\
(n-1) X_{n+1}=p \sum_{j=0}^{n+2} X_{j} X_{n+2-j}+2 q \sum_{j=0}^{n+1} X_{j} X_{n+1-j}+3 r \sum_{j=0}^{n} X_{j} X_{n-j}, \\
\sum_{k=0}^{n} X_{k} X_{n-k}=\frac{(9 r+p q)(n-1) X_{n+1}-\left(6 q+2 p^{2}\right) n Y_{n+1}+\left(4 q^{2}-3 p r+p^{2} q\right)(n+1) X_{n}}{27 r^{2}-p^{2} q^{2}-4 q^{3}+4 p^{3} r+18 p q r} .
\end{gathered}
$$

See [19] for other identities.

APPENDIX 2. SELECTED TRIBONACCI IDENTITIES

We present below selected identities from the literature in which $p=q=r=1$. All these identities were successfully checked by Algorithm "TribSimplify".

The following three identities come from Agronomof [1]:

$$
\begin{gathered}
T_{n+m}=T_{m+1} T_{m}+\left(T_{m}+T_{m-1}\right) T_{n-1}+T_{m} T_{n-2}, \\
T_{2 n}=T_{n-1}^{2}+T_{n}\left(T_{n+1}+T_{n-1}+T_{n-2}\right), \\
T_{2 n-1}=T_{n}^{2}+T_{n-1}\left(T_{n-1}+2 T_{n-2}\right) .
\end{gathered}
$$

The following three identities come from Lin [8] (in their notation, we have $U_{n}=Y_{n+2}$, with $p=q=r=1$):

$$
\begin{gathered}
U_{4 n+1} U_{4 n+3}+U_{4 n+2} U_{4 n+4}=T_{4 n+4}^{2}-T_{4 n+2}^{2}, \\
U_{n+1}^{2}+U_{n-1}^{2}=2\left(T_{n}^{2}+T_{n+1}^{2}\right), \\
T_{n+1}^{2}-T_{n}^{2}=U_{n+1} U_{n-1} .
\end{gathered}
$$

The following five identities were found by Zeitlin [23]:

$$
\begin{aligned}
T_{n+6+a} T_{n+6+b}= & 2 T_{n+5+a} T_{n+5+b}+3 T_{n+4+a} T_{n+4+b}+6 T_{n+3+a} T_{n+3+b} \\
& -T_{n+2+a} T_{n+2+b}-T_{n+a} T_{n+b},
\end{aligned}
$$

$$
\begin{aligned}
&-\left(1-2 x-3 x^{2}-6 x^{3}+x^{4}+x^{6}\right) \sum_{k=0}^{n} T_{k}^{2} x^{k}= T_{n+1}^{2} x^{n+1}+\left(T_{n+2}^{2}-2 T_{n+1}^{2}\right) x^{n+2} \\
&+\left(T_{n+3}^{2}-2 T_{n+2}^{2}-3 T_{n+1}^{2}\right) x^{n+3} \\
&+\left(T_{n+4}^{2}-2 T_{n+3}^{2}-3 T_{n+2}^{2}-6 T_{n+1}^{2}\right) x^{n+4} \\
&-T_{n-1}^{2} x^{n+5}-T_{n}^{2} x^{n+6}-x+x^{2}+x^{3}+x^{4}, \\
& 8 \sum_{k=0}^{n} T_{k}^{2}=T_{n+5}^{2}-T_{n+4}^{2}-4 T_{n+3}^{2}-10 T_{n+2}^{2}-9 T_{n+1}^{2}-T_{n}^{2}+2, \\
& T_{-n}=-W_{n} T_{n}+T_{2 n}, \\
& 22 \sum_{j=0}^{n-2} T_{j} T_{n-2-j}=5(n-1) T_{n}-2(n-1) T_{n-1}-4 n T_{n-2} .
\end{aligned}
$$

The following eleven identities come from Waddill and Sacks [16] (in their notation, we have $K_{n}=X_{n+1}, L_{n}=Y_{n+1}$, and $R_{n}=S_{n-1}+S_{n-2}$, with $p=q=r=1$):

$$
\begin{aligned}
& L_{n}=K_{n-1}+K_{n-2}, \\
& S_{n+h}=K_{h+1} S_{n}+L_{h+1} S_{n-1}+K_{h} S_{n-2}, \\
& S_{2 n}=K_{n+1} S_{n}+L_{n+1} S_{n-1}+K_{n} S_{n-2}, \\
& S_{2 n-1}=K_{n} S_{n}+\left(K_{n-1}+K_{n-2}\right) S_{n-1}+K_{n-1} S_{n-2} \text {, } \\
& S_{n+h}=K_{h+m+1} S_{n-m}+L_{h+m+1} S_{n-m-1}+K_{h+m} S_{n-m-2} \text {, } \\
& S_{n}^{2}+S_{n-1}^{2}+2 S_{n-1} S_{n-2}=S_{2} S_{2 n-2}+R_{2} S_{2 n-3}+S_{1} S_{2 n-4}, \\
& \left|\begin{array}{ccc}
S_{n} & S_{n+h} & S_{n+h+k} \\
S_{n+t} & S_{n+h+t} & S_{n+h+k+t} \\
S_{n+m} & S_{n+h+m} & S_{n+h+k+m}
\end{array}\right|=\left|\begin{array}{cc}
K_{h} & K_{h+k} \\
L_{h+1} & L_{h+k+1}
\end{array}\right| \cdot\left|\begin{array}{ccc}
S_{t} & S_{t+1} & S_{t+2} \\
S_{m} & S_{m+1} & S_{m+2} \\
S_{0} & S_{1} & S_{2}
\end{array}\right|, \\
& \left|\begin{array}{ccc}
K_{n} & K_{n+h} & K_{n+h+k} \\
K_{n+t} & K_{n+h+t} & K_{n+h+k+t} \\
K_{n+m} & K_{n+h+m} & K_{n+h+k+m}
\end{array}\right|=\left|\begin{array}{cc}
K_{h} & K_{h-1} \\
K_{h+k} & K_{h+k-1}
\end{array}\right| \cdot\left|\begin{array}{cc}
K_{m} & K_{t} \\
K_{m-1} & K_{t-1}
\end{array}\right|, \\
& \left|\begin{array}{ccc}
K_{n+1} & K_{n} & K_{n+h} \\
K_{n+h+1} & K_{n+h} & K_{n+2 h} \\
K_{n+2 h+1} & K_{n+2 h} & K_{n+3 h}
\end{array}\right|=K_{h-1} \cdot\left|\begin{array}{cc}
K_{h} & K_{h-1} \\
K_{2 h} & K_{2 h-1}
\end{array}\right|, \\
& \left|\begin{array}{ccc}
K_{n} & K_{n+h} & K_{n+m} \\
K_{n+h} & K_{n+2 h} & K_{n+h+m} \\
K_{n+m} & K_{n+h+m} & K_{n+2 m}
\end{array}\right|=-\left|\begin{array}{cc}
K_{h} & K_{m} \\
K_{h-1} & K_{m-1}
\end{array}\right|^{2}, \\
& \left|\begin{array}{ccc}
S_{n+h+k+t} & S_{n+h+k} & S_{n+h+k+m} \\
R_{n+h+t} & R_{n+h} & R_{n+h+m} \\
S_{n+t} & S_{n} & S_{n+m}
\end{array}\right|=\left|\begin{array}{cc}
K_{h+k-1} & K_{h+k} \\
L_{h-1} & L_{h}
\end{array}\right| \cdot\left|\begin{array}{ccc}
S_{t} & S_{t+1} & S_{t+2} \\
S_{m} & S_{m+1} & S_{m+2} \\
S_{0} & S_{1} & S_{2}
\end{array}\right| .
\end{aligned}
$$

Errata: Computer verification of the various identities encountered in the references consulted during this research revealed a number of typographical errors in the literature. We list the corrections below to set the record straight.

In [4], equation (1.15) should be the same as equation (4.1). Also, equation (1.16) should be the same as equation (3.14).

In [10], equation (2.1) should read " $J_{n+1}=P J_{n}+K_{n}$ ".
In [13], in equation (1.4), " $t_{2}=P^{2}+Q$ " should be " $t_{2}=P^{2}+2 Q$ ". Equation (2.2) should read $" t_{n}=P s_{n-1}+2 Q s_{n-2}+3 R s_{n-3} "$.

In [16], the last term of equation (21) should be " $K_{h+k} P_{n-2}$ ", not " $K_{n+k} P_{n-1}$ ". Also, the final subscript in equation (41) should be " $h-1$ ", not " $n-1$ ". In equation (42), " P_{n+h+m} " should be " R_{n+h+m} " and " K_{n+k} " should be " K_{h+k} ".

ACKNOWLEDGMENT

I would like to thank Paul S. Bruckman, A. F. Horadam, Murray S. Klamkin, Tony Shannon, Lawrence Somer, and David Zeitlin for their fruitful discussions and advice. I also gratefully acknowledge the suggestions made by an anonymous referee.

REFERENCES

1. M. Agronomof. "Sur une suite récurrente." Mathesis (series 4) 4 (1914):125-26.
2. E. T. Bell. "Notes on Recurring Series of the Third Order." The Tôhoku Mathematical Journal 24 (1924):168-84.
3. Brother Alfred Brousseau. "Algorithms for Third-Order Recursion Sequences." The Fibonacci Quarterly 12.2 (1974):167-74.
4. L. Carlitz. "Recurrences of the Third Order and Related Combinatorial Identities." The Fibonacci Quarterly 16.1 (1978):11-18.
5. J. H. Davenport, Y. Siret, \& E. Tournier. Computer Algebra. London: Academic Press, 1988.
6. David E. Dobbs \& Robert Hanks. A Modern Course on the Theory of Equations. Passaic, NJ: Polygonal Publishing House, 1980.
7. Dov Jarden. "Third Order Recurring Sequences." In his Recurring Sequences, 2nd ed., pp. 86-89. Jerusalem: Riveon Lematematika, 1966.
8. Pin-Yen Lin. "De Moivre-Type Identities for the Tribonacci Numbers." The Fibonacci Quarterly 26.2 (1988):131-34.
9. E. P. Miles, Jr. "Generalized Fibonacci Numbers and Associated Matrices." Amer. Math. Monthly 67 (1960):745-52.
10. S. Pethe. "Some Identities for Tribonacci Sequences." The Fibonacci Quarterly 26.2 (1988):144-51.
11. S. Pethe. "On Sequences Having Third-Order Recurrence Relations." In Fibonacci Numbers and Their Applications 1:185-92. Ed. A. N. Philippou et al. Dordrecht: D. Reidel, 1986.
12. Stanley Rabinowitz. "Algorithmic Manipulation of Fibonacci Identities." In Applications of Fibonacci Numbers 6:389-408. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1996.
13. A. G. Shannon. "Iterative Formulas Associated with Generalized Third-Order Recurrence Relations." Siam Journal of Applied Mathematics 23 (1972):364-68.
14. A. G. Shannon \& A. F. Horadam. "A Generalized Pythagorean Theorem." The Fibonacci Quarterly 9.3 (1971):307-12.
15. A. G. Shannon \& A. F. Horadam. "Some Properties of Third-Order Recurrence Relations." The Fibonacci Quarterly 10.2 (1972):135-45.
16. Marcellus E. Waddill \& Louis Sacks. "Another Generalized Fibonacci Sequence." The Fibonacci Quarterly 5.3 (1967):209-22.
17. Marcellus E. Waddill. "Using Matrix Techniques To Establish Properties of a Generalized Tribonacci Sequence." In Applications of Fibonacci Numbers 4:299-308. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1991.
18. M. Ward. "The Algebra of Recurring Series." Annals of Mathematics 32 (1931):1-9.
19. H. C. Williams. "Properties of Some Functions Similar to Lucas Functions." The Fibonacci Quarterly 15.2 (1977):97-112.
20. C. C. Yalavigi. "A Note on 'Another Generalized Fibonacci Sequence.'" The Mathematics Student 39 (1971):407-08.
21. C. C. Yalavigi. "Properties of Tribonacci Numbers." The Fibonacci Quarterly 10.3 (1972): 231-46.
22. David Zeitlin. "On Summation Formulas and Identities for Fibonacci Numbers." The Fibonacci Quarterly 5.1 (1967):1-43.
23. David Zeitlin. Personal correspondence.

AMS Classification Numbers: 11Y16, 11B37

APPLICATIONS OF FIBONACCI NUMBERS

VOLUME 6
 New Publication

Proceedings of The Sixth International Research Conference on Fibonacci Numbers and Their Applications, Washington State University, Pullman, Washington, USA, July 18-22, 1994

Edited by G. E. Bergum, A. N. Philippou, and A. F. Horadam
This volume contains a selection of papers presented at the Sixth International Research Conference on Fibonacci Numbers and Their Applications. The topics covered include number patterns, linear recurriences, and the application of the Fibonacci Numbers to probability, statistics, differential equations, cryptography, computer science, and elementary number theory. Many of the papers included contain suggestions for other avenues of research.
For those interested in applications of number theory, statistics and probability, and numerical analysis in science and engineering:

1996, 560 pp. ISBN 0-7923-3956-8
Hardbound Dfl. $\mathbf{3 4 5 . 0 0}$ / $\mathbf{£ 1 5 5 . 0 0 / U S} \$ 240.00$
AMS members are eligible for a 25% discount on this volume providing they order directly from the publisher. However, the bill must be prepaid by credit card, registered money order, or check. A letter must also be enclosed saying: "I am a member of the American Mathematical Society and am ordering the book for personal use."

KLUWER ACADEMIC PUBLISHERS

P.O. Box 322, 3300 AH Dordrecht The Netherlands
P.O. Box 358, Accord Station
Hingham, MA 02018-0358, U.S.A.

Volumes 1-5 can also be purchased by writing to the same addresses.

