BINOMIAL GRAPHS AND THEIR SPECTRA

Peter R. Christopher

Department of Mathematics Sciences
Worcester Polytechnic Institute, Worcester, MA 01609

John W. Kennedy

Mathematics Department, Pace University, New York, NY 10038
(Submitted May 1995)

1. INTRODUCTION

Pascal's triangle with entries reduced modulo 2 has been the object of a variety of investigations, including number theoretical questions on the parity of binomial coefficients [4] and geometrical explorations of the self-similarity of the Sierpinski triangle [7]. Graph theory has also entered the scene as a consequence of various binary (that is, $\{0,1\}$) matrix constructions that exploit properties of Pascal's triangle. For example, in [2] reference is made to Pascal graphs of order n whose (symmetric) adjacency matrix has zero diagonal and the first $n-1$ rows of Pascal's triangle, modulo 2 , in the off diagonal elements. Constructions such as these are of special interest when the corresponding graphs unexpectedly reveal or reflect properties intrinsic to Pascal's triangle.

This is the case with binomial graphs, the subject of this paper. The adjacency matrices of these graphs are also related to Pascal's triangle, modulo 2. The graphs are found to exhibit a number of interesting properties including a graph property that relates to the Fibonacci sequence. Recall that the $n^{\text {th }}$ Fibonacci number F_{n} appears in Pascal's triangle as the sum:

$$
F_{n}=\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-k-1}{k} .
$$

Other properties of binomial graphs relate to the golden mean, to the Lucas numbers, and to several other features associated with Pascal's triangle.

2. BINOMIAL GRAPHS

For each nonnegative integer n, we define the binomial graph B_{n} to have vertex set $V_{n}=$ $\left\{v_{j}: j=0,1, \ldots, 2^{n}-1\right\}$ and edge set $E_{n}=\left\{\left\{v_{i}, v_{j}\right\}:\binom{i+j}{j} \equiv 1(\bmod 2)\right\}$. We define $\binom{0}{0}=1$; thus, each binomial graph has a loop at v_{0}, but is otherwise a simple graph (that is, has no other loop and no multiedge). The binomial graph B_{3} and its adjacency matrix $\boldsymbol{A}\left(B_{3}\right)$ are depicted in Figure 1.

Obviously, $\left|V_{n}\right|=2^{n}$. Also, for each $k=0,1, \ldots, n-1, B_{n}$ has $\binom{n}{k}$ vertices of degree 2^{k} and a single vertex, v_{0}, of degree $2^{n}+1$. Thus, the sum of the degrees of vertices in B_{n} is

$$
\sum_{k=0}^{n-1}\binom{n}{k} 2^{k}+\left(2^{n}+1\right)=1+\sum_{k=0}^{n}\binom{n}{k} 2^{k}=3^{n}+1 .
$$

Consequently, $\left|E_{n}\right|=\frac{1}{2}\left(3^{n}+1\right)$.

The adjacency matrix $A\left(B_{n}\right)$ exhibits a self-similarity. In this form, it can be described in terms of a Kronecker product of matrices. Recall that if $\boldsymbol{A}=\left[a_{i j}\right]$ is an $\boldsymbol{m} \times n$ matrix and \boldsymbol{B} is a $p \times q$ matrix, then the Kronecker product $\boldsymbol{A} \otimes \boldsymbol{B}$ is the $m p \times n q$ matrix, $\boldsymbol{A} \otimes \boldsymbol{B}=\left[a_{i j} \boldsymbol{B}\right]$.

B_{3}	$A\left(B_{3}\right)$								
		$\mathrm{j}=0$	1	2	3	4	5	6	7
	$\mathrm{i}=0$	1	1	1	1	1	1	1	1
	1	1	0	1	0	1	0	1	0
	2	1	1	0	0	1	1	0	0
	3	1	0	0	0	1	0	0	0
	4	1	1	1	1	0	0	0	0
	5	1	0	1	0	0	0	0	0
		1	1	0	0	0	0	0	0
	7	1	0	0	0	0	0	0	0

FIGURE 1. The Binomial Graph B_{3} and Its Adjacency Matrix
Thus, if we take $A\left(B_{0}\right)=[1]$, then, for each $n \geq 1$, the adjacency matrix of the binomial graph B_{n} is

$$
A\left(B_{n}\right)=\left[\begin{array}{cc}
A\left(B_{n-1}\right) & A\left(B_{n-1}\right) \\
A\left(B_{n-1}\right) & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \otimes A\left(B_{n-1}\right)=A\left(B_{1}\right) \otimes A\left(B_{n-1}\right)
$$

3. SPECTRA OF BINOMIAL GRAPHS

The eigenvalues of a graph G are the eigenvalues of $A(G)$, the adjacency matrix of G. The spectrum of a graph is the sequence (or multiset) of its eigenvalues. We denote the spectrum of graph G by $\Lambda(G)$.

To obtain the spectrum of the binomial graph B_{n}, we exploit the following result concerning Kronecker products.

Lemma 1 (see [1]): Let A be an $n \times n$ matrix with (not necessarily distinct) eigenvalues λ_{1}, λ_{2}, \ldots, λ_{n} and eigenvalues $x_{1}, x_{2}, \ldots, x_{n}$. Let \boldsymbol{B} be an $m \times m$ matrix with eigenvalues $\mu_{1}, \mu_{2}, \ldots, \mu_{m}$ and eigenvectors $y_{1}, y_{2}, \ldots, y_{m}$. Then the Kronecker product $\boldsymbol{A} \otimes \boldsymbol{B}$ has $n m$ eigenvalues $\lambda_{i} \mu_{j}$ and eigenvectors $x_{i} \otimes y_{j}$ for each $i=1,2, \ldots, n$ and each $j=1,2, \ldots, m$.

We use this lemma to establish that the eigenvalues of binomial graphs are powers of the golden mean, as are the entries in the corresponding eigenvectors.

Theorem 1: Let $\varphi=\frac{1}{2}(1-\sqrt{5})$. For each $n \geq 0$, the binomial graph B_{n} has $n+1$ distinct eigenvalues, specifically, $(-1)^{j} \varphi^{n-2 j}$, for each $j=0,1, \ldots, n$. Each of these eigenvalues occurs with multiplicity $\binom{n}{j}$, so that the spectrum of B_{n} is

$$
\Lambda(B)=\left[\left((-1)^{j} \varphi^{n-2 j}\right)^{(n)}: j=0,1, \ldots, n\right]
$$

where $\lambda^{(m)}$ means that the eigenvalue λ has multiplicity m. Furthermore, for $n \geq 1,2^{n}$ linearly independent eigenvectors of B_{n} are scalar multiples of the columns in the Kronecker product $\boldsymbol{X}\left(B_{n}\right)=\boldsymbol{X}\left(B_{1}\right) \otimes \boldsymbol{X}\left(B_{n-1}\right)$, where $\boldsymbol{X}\left(B_{n}\right)=\left[x_{1}, x_{2}, \ldots, x_{2^{n}}\right]$ is the matrix of eigenvectors of B_{n} with

$$
X\left(B_{0}\right)=[1], \quad X\left(B_{1}\right)=\left[\begin{array}{cc}
1 & 1 \\
1 / \varphi & -\varphi
\end{array}\right] .
$$

Finally, the characteristic polynomial of B_{n} is

$$
\mathscr{P}\left(B_{n} ; x\right)=\prod_{j=0}^{n}\left[x-(-1)^{j} \varphi^{n-2 j}\right]^{(j)} .
$$

Proof: Since $A\left(B_{0}\right)=[1]$, obviously $\Lambda\left(B_{0}\right)=[1]$ and $\mathscr{P}\left(B_{0} ; x\right)=x-1$. Since

$$
A\left(B_{1}\right)=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right],
$$

then

$$
\mathscr{P}\left(B_{1} ; x\right)=\operatorname{det}\left[\begin{array}{cc}
x-1 & -1 \\
-1 & x
\end{array}\right]=x^{2}-x-1,
$$

so that $\Lambda\left(B_{1}\right)=\left[\varphi,-\frac{1}{\varphi}\right]$, as required by the theorem. Furthermore, the two eigenvectors are $x_{1}^{\mathrm{T}}=\left[1, \varphi^{-1}\right]$ and $x_{2}^{\mathrm{T}}=[1,-\varphi]$ (or scalar multiples thereof), so that

$$
X\left(B_{1}\right)=\left[\begin{array}{cc}
1 & 1 \\
1 / \varphi & -\varphi
\end{array}\right] .
$$

Since, for each $n>1$

$$
\boldsymbol{A}\left(B_{n}\right)=\boldsymbol{A}\left(B_{1}\right) \otimes \boldsymbol{A}\left(B_{n-1}\right)=\underbrace{\boldsymbol{A}\left(B_{1}\right) \otimes \boldsymbol{A}\left(B_{1}\right) \otimes \cdots \otimes \boldsymbol{A}\left(B_{1}\right)}_{n \text { factors }},
$$

then, by Lemma 1, the spectrum $\Lambda\left(B_{n}\right)$ consists of the n-fold (Cartesian) product of eigenvalues from the spectrum $\Lambda\left(B_{1}\right)=\left[\varphi,-\frac{1}{\varphi}\right]$. That is, the $j^{\text {th }}$ distinct eigenvalue λ_{j} of B_{n} is the coefficient of $\binom{n}{j} t^{j}$ in the expansion of

$$
\left(\varphi-\frac{t}{\varphi}\right)^{n}=\Sigma(-1)^{j}\binom{n}{j} \varphi^{n-2 j} t^{j},
$$

and the multiplicity of λ_{j} is $\left.\begin{array}{c}n \\ j\end{array}\right)$. Furthermore, also by Lemma 1, $\boldsymbol{X}\left(B_{n}\right)=\boldsymbol{X}\left(B_{1}\right) \otimes \boldsymbol{X}\left(B_{n-1}\right)$.

4. CHARACTERISTIC POLYNOMIALS OF BINOMIAL GRAPHS

A polynomial of degree $n, P(x)=\sum_{k=0}^{n} c_{k} x^{k}, c_{0} \neq 0$, is called palindromic if, for each $k=0$, $\ldots, n,\left|c_{k}\right|=\left|c_{n-k}\right|$ (see [3] and [6]). Some interest attaches to graphs whose characteristic polynomials are palindromic. A palindromic polynomial is said to be exactly palindromic if, for each $k, c_{k}=c_{n-k}$ and skew palindromic if $c_{k}=-c_{n-k}$. A palindromic polynomial of even degree is called even pseudo palindromic if, for each $k, c_{k}=(-1)^{k} c_{n-k}$ and odd pseudo palindromic if $c_{k}=$ $-(-1)^{k} c_{n-k}$.

By expressing the characteristic polynomials of binomial graphs as products of simple (unit) quadratic factors involving the Lucas numbers, we show that the binomial graphs are palindromic with respect to their characteristic polynomials.

From Theorem 1, $\mathscr{P}\left(B_{0} ; x\right)=x-1$ is obviously skew palindromic. For even $n>0$,

$$
\begin{aligned}
\mathscr{P}\left(B_{n} ; x\right) & =\prod_{j=0}^{n}\left[x-(-1)^{j} \varphi^{n-2 j}\right]^{(n)} \\
& \left.\left.=\left(x-(-1)^{n / 2}\right)^{\left(n^{n} / 2\right.}\right)_{j=0}^{(n-2) / 2}\left[x^{2}-(-1)^{j}\left(\varphi^{n-2 j}+\hat{\varphi}^{n-2 j}\right) x+(-1)^{n}\right]^{n}\right),
\end{aligned}
$$

where $\hat{\varphi}=-\frac{1}{\varphi}\left(=\frac{1-\sqrt{5}}{2}\right)$. Since, for even $n>0$, the central binomial coefficient $\binom{n}{n / 2}$ is even, then

$$
\mathscr{P}\left(B_{n} ; x\right)=\left(x^{2}-(-1)^{n / 2} L_{0} x+1\right)^{\frac{1}{2}\left(n_{2} / 2\right.} \prod_{j=0}^{(n-2) / 2}\left[x^{2}-(-1)^{j} L_{n-2 j} x+1\right]^{(n)},
$$

where L_{k} is the $k^{\text {th }}$ Lucas number for $k \geq 1$ and $L_{0}=2$. Consequently, for even $n>0, \mathscr{P}\left(B_{n} ; x\right)$ is a product of exact palindromic (quadratic) polynomials; hence, see Lemma 2.2 in [3], $\mathscr{P}\left(B_{n} ; x\right)$ is exact palindromic.

For n odd, B_{n} has no eigenvalue of unit magnitude, but similarly,

$$
\mathscr{P}\left(B_{n} ; x\right)=\prod_{j=0}^{(n-1) / 2}\left[x^{2}-(-1)^{j} L_{n-2 j} x-1\right]^{(n)},
$$

so that $\mathscr{P}\left(B_{n} ; x\right)$ is a product of 2^{n-1} odd pseudo palindromic polynomials. Obviously $\mathscr{P}\left(B_{n} ; x\right)$ is odd pseudo palindromic but (see [3], Lemma 2.2), for each odd $n>1, \mathscr{P}\left(B_{n} ; x\right)$ is even pseudo palindromic.

Note that for each binomial graph B_{n} with $n>1$, the characteristic polynomial $\mathscr{P}\left(B_{n} ; x\right)$ can be expressed as a product of unit quadratic factors whose central coefficients are Lucas numbers L_{k} with $k \equiv n(\bmod 2)$.

5. CLOSED WALKS IN BINOMIAL GRAPHS

As was observed by P. W. Kasteleyn [5], the characteristic polynomial $\mathscr{P}(G ; x)$ of a graph G can be applied to determine the number of closed walks of fixed length in G. We state this result as

Lemma 2: The total number of closed walks of length k in a graph G is the coefficient of t^{k} in the generating function

$$
W(G ; t)=\frac{\mathscr{P}\left(G ; \frac{1}{t}\right)}{t \mathscr{P}\left(G ; \frac{1}{t}\right)}, \text { where } \mathscr{P}^{\prime}(G ; x)=\frac{d}{d x} \mathscr{P}(G ; x) \text {. }
$$

By applying this lemma to the graphs B_{n}, we obtain a connection between binomial graphs and the Lucas numbers.

Theorem 2: The (ordinary) generating function for the total number of closed walks of length k in the binomial graph B_{n} is

$$
W\left(B_{n} ; t\right)=\sum_{k=0}^{\infty} L_{k}^{n} t^{k},
$$

where L_{k} is the $k^{\text {th }}$ Lucas number for $k \geq 1$ and $L_{0}=2$.
Proof: By Lemma 2,

$$
W\left(B_{n} ; t\right)=\frac{\mathscr{P}\left(B_{n} ; \frac{1}{t}\right)}{t \mathscr{P}\left(B_{n} ; \frac{1}{t}\right)},
$$

where, from Theorem 1,

$$
\mathscr{P}\left(B_{n} ; x\right)=\prod_{j=0}^{n}\left[x-(-1)^{j} \varphi^{n-2 j}\right]^{(n)} .
$$

Setting $\hat{\varphi}=-\frac{1}{\varphi}\left(=\frac{1-\sqrt{5}}{2}\right)$, we can write

$$
\mathscr{P}\left(B_{n} ; x\right)=\prod_{j=0}^{n}\left(x-\hat{\varphi}^{j} \varphi^{n-j}\right)^{\left(n_{j}^{n}\right)} .
$$

Taking the logarithm of both sides and differentiating with respect to x yields

$$
\frac{\mathscr{P}^{\prime}\left(B_{n} ; x\right)}{\mathscr{P}\left(B_{n} ; x\right)}=\sum_{j=0}^{n} \frac{\binom{n}{j}}{x-\hat{\varphi}^{j} \varphi^{n-j}} .
$$

It follows that

$$
\begin{aligned}
W\left(B_{n} ; t\right) & =\sum_{j=0}^{n} \frac{\binom{n}{j}}{1-\hat{\varphi}^{j} \varphi^{n-j} t}=\sum_{j=0}^{n}\binom{n}{j} \sum_{k=0}^{\infty} \hat{\varphi}^{j k} \varphi^{(n-j) k} t^{k} \\
& =\sum_{k=0}^{\infty}\left(\sum_{j=0}^{n}\binom{n}{j} \hat{\varphi}^{j k} \varphi^{(n-j) k}\right) t^{k}=\sum_{k=0}^{\infty}\left(\varphi^{k}+\hat{\varphi}^{k}\right)^{n} t^{k}=\sum_{k=0}^{\infty} L_{k}^{n} t^{k} .
\end{aligned}
$$

Consider now the number of closed walks of length k in B_{n} with initial (and final) vertex v_{0}. Let $W_{0}\left(B_{n} ; t\right)$ denote the generating function for this sequence. To determine the coefficients of this generating function, we first need the following lemma.

Lemma 3: Let $v_{j} \in V\left(B_{n}\right)$ with the vertices labeled in natural order $\left\{0,1, \ldots, 2^{n}-1\right\}$ and let $w_{n}(j)$ denote the representation of the natural number j as a binary word of length n. Then $\left\{v_{i}, v_{j}\right\} \in$ $E\left(B_{n}\right)$ if and only if $w_{n}(i)$ and $w_{n}(j)$ have no 1-bit in common.

Proof: The lemma is an immediate consequence of the fact that

$$
\binom{i+j}{i}=\binom{i+j}{j} \equiv 1(\bmod 2)
$$

if and only if $w_{n}(i)$ and $w_{n}(j)$ have no 1-bit in common.
Theorem 3: The number of closed walks of length k with initial vertex v_{0} in B_{n} is the coefficient of t^{k} in the generating function

$$
W_{0}\left(B_{n} ; t\right)=\sum_{k=0}^{\infty} F_{k+1}^{n} 1^{k}
$$

where F_{k} is the $k^{\text {th }}$ Fibonacci number.

Proof: The statement is easily verified for $k=0$ or 1 : the number of closed walks starting at v_{0} in B_{n} is equal to 1 in each case. For $k \geq 2$, a walk of length k in B_{n} can be described as an ordered list of $k+1$ vertices. Let each vertex $v_{j}\left(j=0,1, \ldots, 2^{n}-1\right)$ be labeled with the corresponding binary word, $w_{n}(j)$, of length n. Then a walk of length k in B_{n} can be described as an ordered list of $k+1$ binary words each of length n and such that no two consecutive words have a 1 -bit in common. Obviously, for a closed walk commencing at vertex v_{0}, the first and last binary word is the zero word $w_{n}(0)$.

Consider the $(k-1) \times n$ matrix M, whose rows in sequence are the binary words describing a closed walk in B_{n} starting at v_{0}, with the first and last word $w_{n}(0)$ deleted. Now the columns of M can be viewed as n independent and ordered $\{0,1\}$-sequences of length $k-1$, with the property that no two 1-bits are adjacent. Since there are exactly F_{k+1} such sequences, where F_{k} is the $k^{\text {th }}$ Fibonacci number, it follows that there are F_{k+1}^{n} binary words of length n in which no two consecutive words have a 1 -bit in common. That is, the number of closed walks of length k from v_{0} in B_{n} is F_{k+1}^{n}.

REFERENCES

1. S. Barnett. Matrix Methods for Engineers and Scientists, pp. 121-22. New York: McGrawHill, 1979.
2. N. Deo \& M. J. Quinn. "Pascal Graphs and Their Properties." The Fibonacci Quarterly 21.3 (1983):203-14.
3. E. J. Farrell, J. W. Kennedy, L. V. Quintas, \& S. A. Wahid. "Graphs with Palindromic Matching and Characteristic Polynomials." Vishwa International J. of Graph Theory 1 (1992):59-76.
4. N. J. Fine. "Binomial Coefficients Modulo a Prime." Amer. Math. Monthly 43 (1947):58992.
5. P. W. Kasteleyn. Graph Theory and Theoretical Physics, ed. F. Harary, pp. 43-110. New York: Academic Press, 1967.
6. J. W. Kennedy. "Palindromic Graphs." In Graph Theory Notes of New York 22:27-32. New York: N.Y. Academy of Sciences, 1992.
7. S. Wolfram. "Geometry of Binomial Coefficients." Amer. Math. Monthly 91 (1984):566-71.

AMS Classification Numbers: 05C50, 11B39, 15A18

```
%%%%
```

