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1. INTRODUCTION AND PRELIMINARIES 

The aim of this paper is to extend the previous work [1] by considering the polynomials 

ZM^fi-V—^yy"11^ (»*l) (1.D 
j=o " - A J ) 

in the indeterminate^, where the symbol [ • J denotes the greatest integer function. It can be seen 
that 

z n = b W . l ) ("even), 
\y-ll2pn(ymA) (Koddand^O), 

where pn(y, 1) are the Dickson polynomials iny with the parameter c = 1 (e.g., see (1.1) of [1]). 
Because of the relation (1.2), the quantities Zn(y) will be referred to as modified Dickson poly-
nomials. Information on theoretical aspects and practical applications of (usual) Dickson poly-
nomials can be found through the exhaustive list of references reported in [1], where an extension 
of them has been studied. 

In this article we are concerned with modified Dickson polynomials taken at nonnegative 
integers. In fact, it is the purpose of this article to establish basic properties of the elements of the 
sequences of integers {Zn(k)}% (k = 0,1,2,...). More precisely, in Section 2 closed-form expres-
sions for Zn(k) are found which, for £ = 2,3, and 4, give rise to three supposedly new com-
binatorial identities. Several identities involving Zn(k) are exhibited in Section 3, while some 
congruence properties of these numbers are established in Section 4. 

To obtain the results presented in Sections 2 and 3, we make use of the main properties of 
the generalized Fibonacci numbers U„(x) and the generalized Lucas numbers Vn(x) (e.g., see [2], 
[8]) defined by 

Un{x) = xU^{x)+U^2{xl [U0(x) = 0, Ux(x) = 1], (1.3) 

Vn(x) = xVn_1(x) + Vn_2(x), [F0(x) = 2,K1(x) = x], (1.4) 
where x is an arbitrary (possibly complex) quantity. Recall that closed-form expressions (Binet 
forms) for U„(x) and Vn(x) are 

iUn(x) = (a"x-P"x)/Ax, 
[V„(x) = a"x+f]"x, 

where 

ax = (x + Ax)/2, (1.6) 
0x = (x-Ax)/2. 
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As an illustration, the numbers Zn(k) are displayed in Table 1 for the first few values of k and 
n. From (1.1), we can observe that Z0(k) yields the indeterminate form 0/0. For the sake of 
completeness, we assume that 

Z0(k)d=2\/k. (1.7) 

It can be checked readily that all the results established throughout the paper are consistent with 
the assumption (1.7). 

TABLE 1. The Numbers Zn(k) for 0 < n, k < 8 
\ f c 0 1 2 3 4 5 6 7 8 
n 

0 

1 

2 

3 

4 

5 

6 

7 

2 

1 

-2 

-3 

2 

5 

-2 

-7 

2 

2 

-1 

-2 

-1 

2 

-1 

2 

1 

0 

-1 

-2 

-1 

0 

1 

2 

2 

0 

-1 

-1 

-2 

- 1 

-1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

2 

1 

3 

2 

7 

5 

18 

13 

47 

2 

1 

4 

3 

14 

11 

52 

41 

194 

2 

1 

5 

4 

23 

19 

110 

91 

527 

2 

1 

6 

5 

34 

29 

198 

169 

1154 

2. CLOSED-FORM EXPRESSIONS FOR Zn{k) 

The following identity (see [3]) plays a crucial role in the proofs of the results established in 
this article. 

zn(K) = 
2, ]K(x) ("even), 

U„(x) (/i odd). 

V„(1) = L„ (neven), 
As particular cases of (2.1), we have 

4(5) = , 

where /^ and Z„ are the /7th Fibonacci and Lucas numbers, respectively, and 

zm = lVn(2) = Qn ("*even)' 
" U R(2) = P„ (nodd), 

where ij, and <2„ are the n^ Pell and Pell-Lucas numbers, respectively (e.g., see [6]). 

(2.1) 

(2.2) 

(2.3) 

2.1 Results 
A closed-form expression for Zn{k) which is valid for all k can be obtained readily from (2.1), 

(1.5), and (1.6). Namely, we get 

\Vn(sfk^4) (#i even), 
4(*) = -C/„(VF-4) (»odd). 

(2.4) 
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It is worth mentioning that using (2.4) along with an interesting result established by Melham 
and Shannon [9, (5.1)-(5.3)] allows us to state that the terms of {Zn(k)} are generated by the 
powers of the 2-by-2 matrix M^ defined as 

Jc-2 V F 1 ^ 
I V F ^ 2 M* = (2.5) 

More precisely, it can be seen that the lower-right entry of Mn
k equals k^^Z^k). 

As we shall see in the following, for k = 1,2,3, and 4, the corresponding value of Zn(k) is 
periodic, and (2.4) produces some interesting combinatorial identities. The proofs of these results 
are given in subsection 2.2. 

The trivial case k = 0 is treated here only for the sake of completeness. This can be solved 
readily on the basis of the usual convention (e.g., see [10, p. 147]) 

[l, if/i = 0, 
k if/i>0. 

0* = (2.6) 

In fact, from (1.1) and (2.6), we have 

n (»-|»/2_p 
n-\nl2\y \nl2\ z«(9) = : (_1)L»/2j; 

2(-l) nil (n even), 
W_l)(»-i)/2 („odd). 

(2.7) 

The case k = 1 gives rise to a particularly interesting combinatorial identity. Its solution 
(credited to Hardy, 1924), which is reported in [10, p. 77], contains several misprints. In [4] we 
proved that 

z„G) = 
2(-l)", if« = 0(mod3), 

(-1) n+l otherwise. 
(2.8) 

In this article we give a simpler proof of (2.8) which is obtained by using the Binet forms for 
U„(x) and Vn(x), and certain trigonometric identities. For 2 < k < 4, we get the identities 

Z„(2) = 

Z„(3) = 

and 

Z„(4)= 

-2, 
- 1 , 
0, 
1, 
2, 

-2, 
- 1 , 
0, 
1, 
2, 

2 

if n = 4, 
if« = ±3, 
if« = ±2 (mod 8), 
if« = ±l, 
ifw = 0, 

if n = 6, 
if n = ±A or +5, 
if /7 = ±3 (mod 12) 
ifn = ±lor ±2, 
ifwsO, 

(« odd), 
(n even). 

(2.9) 

(2.10) 

(2.11) 
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2.2 Proofs 
The proofs of (2.8)-(2.11) are similar so that, for the sake of brevity, we prove only (2.8) and 

(2.9). 

Proof of (2.8): Denoting the imaginary unit by /*, from (2.4) write 

z |F„(/V3) (/i even), 
" [U„(ij3) (nodd), 

whence, on using the Binet forms (1.5), 

z„(i)=[(/V3+i)/2r+(-in(/V3-i)/2r 
nn . . nn , 1X„ = cos— + / sin — + (-1) 3 3 v ' 

Using (2.13) along with the trigonometric identities 

• nn , lV7+i . 2nn 
sin — = (-1) sin 

3 v J 3 

2nn . . Inn cos +/ sin 

and 

cos- nn k-i)", if 3 k 

(-l)"+1/2, otherwise, 

yields identity (2.8). Q.E.D. 

Proof of (2.9): From (2.4) write 

Z„(2) = 
[V„(ij2) (neven), 
W„(iV2) (nodd), 

whence, on using (1.5), 

ZK(2) = \ 
[(/V2 + yfl) I If + [(;4l - V2) / 2]" (« even), 

Ui {[(ijl + -Jl) 12]" -[(/V2 - V2) / 2f} (n odd), 

nn . . nn Inn . . Inn 
cos h / sin 1- cos 1- / sin 

4 4 4 4 1 
J2 

nn . . nn 3nn . . Inn 
cos 1- / sin cos / sin 

4 4 4 4 

(n even), 

(n odd). 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

Using (2.17) along with the trigonometric identities 
m 
4 

and 

. nn , ,.„+! . 3nn sin — = (-1) sin (2.18) 
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cos— = (-1) cos = \ 

- 1 , if w = 4, 
-1/V2, ifrc = ±3, 
0, if ws ±2 (mod 8), 
1/V2, ifw = ±l, 
1, if/isO, 

(2.19) 

yields identity (2.9). Q.E.D. 

3. SOME IDENTITIES INVOLVING Zn(k) 

Some simple identities involving the numbers Zn(k) (or simply Zn if no misunderstanding can 
arise) are exhibited in this section. Most of the proofs are left as an exercise for the interested 
reader. First, we get the recurrences 

\-Zn_x (n even), 
[Zn+2 (n odd). 

Zn+i Zn - (3.1) 

Then, we observe that, for n even, identity (3.1) is a special case (namely, m = 1) of the more 
general identity 

ikZ„Zm, ifn and m are odd, 
Z + Z_ = 

[ZnZm, otherwise, 
which can be proved by using (2.4) and the identities (3)-(8) of [7, p. 94]. It is worth noting that 
letting n be a suitable function of m in (3.2) yields 

ZnZn_x = Zln_x + \ (* = m + l), (3.3) 

Zln^' 
Z„2-2 (weven) 

Uzw
2-2 (wodd) 

(n = m\ (3.4) 

Z3n = Zn(Z2n-l) (n = 2m) 

Z^-3Z„ («even) 

|&Z„3-3Z„ (w odd) 
[from (3.4)]. 

More generally, for h = 1,2,3,..., we get the multiplication formula 

^I<-^(V) •Z„*-2' (neven), 
.Zh-2jklm\-j ( w o ( J d ) 

(3.5) 

(3.6) 

Induction on h provides the required proof. Observe that, for n even, Zhn and the Dickson poly-
nomial ph(Zn, 1) coincide, whereas, for n odd and h even, Zhn{k) = Zh(kZ*(k)). 

The Simson formula analog for the sequence {Z„(&)} is 

1 (n even) 2 _(-!)"(*-1)Z,„ +2 
2-k (wodd). (3.7) 
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Properties of the matrix M^ [see (2.5)] are useful tools for discovering combinatorial iden-
tities involving Zn. For example, denoting by I the 2-by-2 identity matrix, we can expand the 
identity (see (5.8) of [9]) 

[* (M, - I ) r=M 2 / , (3.8) 

and equate the lower-right entries on both sides to obtain 

I(-l)'(j)*L'/2jZy_, = {-\)"Z2n_v (3.9) 

Remark: The assumption Z_x - 1 \/k is implied by the definition M° = I. The same result can be 
obtained by using (3.1) and (1.7). 

Analogously, after noting that M^1 = l-Mk/k, we can expand the identity MJMj^ = M"k~h 

to get the relation 

t(-l){^L(-y)/2jZM+,_! = k^-h^Zn_h_x (n > h) (3.10) 

which, for n - h, reduces to 

Let us conclude this section by stating the summation identity: 

$N(k)d=f^Z„ = ZN+2 + ZN;l~ZN~ZN-l-\ (**4) (3.12) 
«=i k-A 

(ZN+2 - 2ZN_X) / (* - 4) - 1 (N even) 
[from (3.1)1. (3.120 

(2ZA,+2-ZA,_1)/(A-4)-l (JVodd) 

Remarks: 
(i) Assumption (1.7) is needed to get the obvious result Sx(k) -Zx-\. 

[IN 12 (AT even) 
(ii) SN(4) = \ [from (2.11)] (3.13) 
< ' NK \ \ ( 3 # - l ) / 2 (Nodd) L V n' V } 

Proof of (3.12): First, consider N odd, and rewrite SN(k) as 
(N+l)/2 (N-l)/2 

SN(k)= IZ 2 / . l + £Z2 / 

(N+l)/2 ^ (N-l)/2 

= I M ^ + I ^ / ^ ) [from (2.4)]. 
(3.14) 

By using the Binet forms (1.3) and (1.4), and the geometric series formula, it can be readily seen 
that 

Z t / 2 / - iW = [ ^ 2 * + i W - ^ i W ] / * 2 ( 3 1 5 ) 

and 
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TV2J(x) = [V2h+2(x)-V2h(x)-x2]/x\ (3.16) 

whence, Invoking (2.4) again, (3.14) reduces to (3.12). The proof for N even is analogous to that 
for N odd, and is omitted. Q.E.D. 

4. CONGRUENCE PROPERTIES OF Zn(k) 

In this section we show some basic congruence properties of the numbers Zn(k). For reasons 
of space, only Proposition 2 is proved in detail. We have established the following: 

[n = 0 (mod 2) (k even) 
Z„(*)s0(mod2)if ; ; (4.1) 

[n = 0 (mod 3) (k odd). 
From (1.1), we clearly have that 

Z„(*)sZ„(0)(modA) (k>l), (4.2) 

where ZQ(k) is given by (2.7). From (4.2), (2.7), and (3.4), one can readily see that 

ZnW-U°) = ZMzl = zl2(k) [K = 2(mod4)]. (4.3) 

Observe that (4.2) and (2.7) imply the congruence 
Zk(k) = 0 (mod k) (kodd). (4.4) 

From (4.4) and (2.4), one immediately gets the following (supposedly known) result. 

Proposition 1: If m is an odd integer and h - m2 + 4, then Uh(m) is divisible by h. 

Finally, let us state the following proposition. 

Proposition 2: lip is an odd prime, then 

Zp(k) = (k/p) (mod/0, (4-5) 

where (k I p) denotes the Legendre symbol. 

It is worth noting that (2.4) and (4.5) constitute a simple proof of a well-known congruence 
property of the generalized Fibonacci numbers Un(s) (s an arbitrary integer) defined by (1.3). In 
fact, we get 

Up(s)^(s1
+4/p) (mod/*). (4.6) 

Proof of Proposition 2: That (n~J) = 0 (mod n - j) if j > 1 and gcd(w, j) = 1 is a well-known 
fact (e.g., see Lemma 1 of [5]). Consequently, from (1.1), we have 

Zp(k)^k^'2 (modp), (4.7) 

whence 

Zp(£)E=0(mod/?)ifA: = 0(mod/?). (4.8) 
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If k # 0 (mod/?), by Fermat's little theorem we have the congruence kp l = 1 (mod/?), whence we 
can write 

(k{P-m + i)(jt(p-D/2 _ x ) _ 0 ( m o d ^ ( 4 9 ) 

Let a (b) be the first (second) factor on the left-hand side of (4.9). Since p > 3 by definition, 
either a or b (not both) is divisible by/?. If £ is a quadratic residue (q.r.) (mod /?) [i.e., if there 
exists z such that k = z2 (mod/?)], then, by Fermat's little theorem, we have k{p~l)l2 = z

2(p~l)/2 = 1 
(mod/?), that is, b = 0 (mod/?). If & is not a q.r. (mod/?), then we necessarily have a == 0 (mod/?). 
Therefore, from (4.7), we can write 

Z,(*H ,,_.^ _.,.___,_ (41°) 
[l (mod /?) if A: is a q. r. (mod /?), 

-1 (mod /?) otherwise 

Congruences (4.8) and (4.10) prove the proposition. Q.E.D 
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