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0. INTRODUCTION 

A homogeneous linear recurrence of second order with constant coefficients is a sequence of 
equations 

for fixed complex numbers a,b*0. A solution {un}n>Q is completely determined by (0) and the 
two initial values u0,ux. C. Kimberling [1] raised the following problem: under what conditions 
on two nonnegative integers i,j does every complex pair z/z, Uj determine the whole recurrence 
sequence {un} with (0)? In this article, I give two answers to this question (Theorems 1 and 2; 
the second corrects Theorems 2 and 6 of [1]) and apply them to the properties of the initial pairs. 
In Theorem 3 I discuss how they are distributed, while in Theorem 4 I discuss which initial values 
generate a periodic sequence. 

1. A FIRST CRITERION FOR INITIAL PAIRS 

Given a recurrence (0), we call two nonnegative numbers / < j an "initial pair" if, for all com-
plex numbers ci9Cj, there exists one and only one solution {un} of (0) with ui -c,, Uj =Cj. An 
initial pair is always /,/ + l. Most pairs i,j will be initial, but there are exceptions: 0,2 is not an 
initial pair of un+2 = un. 

Theorem 1 ([1], Theorem 1): Given the recurrence (0) with b * 0, for every pair of nonnegative 
integers i,j with / +1 < j , the following two conditions are equivalent: 

ij is an initial pair for (0); (1) 

the (J-i-1)-rowed matrix 

(2) 

is regular. 

Proof: The pair /', / + 2 is initial iff a * 0, since aui+l = ui+2 - but. So let j>i + 2. If uf - c; 
and Uj - Cj are given, then the equations bun + aun+l - un+2 = 0, for n = /, i +1,..., j - 2, give us the 
system 
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auM- ui+2 

bui+1+aui+2- M,+3 

bui+2+aui+3- -«,+4 

= -bc, 
= 0 
= 0 

bu_3+au_2- u_x=0 
bUj_2+aUj_l =Cj. 

Now, 7,7 is an initial pair iff this system of 7 - 7 - 1 linear equations has a unique solution 
w/+1, ui+2, ...,Uj-i (and hence all un,n>0, are determined) for all c7, c.. A necessary and sufficient 
condition for this is that the associated homogeneous linear system is only trivially soluble, hence 
the regularity of the coefficient matrix DjH, Q 

Remark: This criterion can be extended to sequences of higher order (see [1], Theorem 7). Con-
dition (1) is equivalent to the following: the monoms z\zJ are a basis of the complex vector-
space C[z] of polynomials modulo the subspace C[z](z2 -az -h). This was generalized by 
M. Peter [2] to recurrences of several variables of higher order. 

2. A SECOND CRITERION FOR INITIAL PAIRS 

Let n: = 7 - i. We compute dn: = det Dn by expanding the determinant of Dn+2 a la Laplace: 
dn+2=adn+l+bdn, do'=°, dV=^- ( 3 ) 

Let 
£ i : = l ( a + Va2+46) and £2: = j ( a - Va2 + 46) 

be the zeros of the companion polynomial z -az-b of (0), then the solution of the initial 
problem (3) has the Binet representation 

1 

d = 
r_r-(Ci-Cn

2) x&*C2, 
, (4) 

for all n GN. Hence we get dn = 0<=>£x *£2, C\-Ci- The last condition is equivalent to 

31</w<w-l: C,x = exp| 2m— \C,2. 

We compute 

^ = exp 2^7— K2 <=>a + Va2+4Z> =expi2m— \(a-ja2+4b) 

<=><%la2 +4h exp 2^7—1 + 1 \ = a exp\2m— -

<=>Va2 +4Z> cos ;r— =- m 
-7a sin I ;r— n 

This finally means 
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3\<m<n-l: a2 = -4b cos2 n— 

Combining this with Theorem 1, we have 

Theorem 2: Suppose we have a recurrence (0) with b & 0 and a pair of nonnegative integers 
/ < j . Then the following three properties are equivalent: 

ij is an initial pair of (0); (1) 

if ^ and <̂ 2 are the zeros of the polynomial z2 -az-h, then C,x - <̂ 2 or £{~~l * £J
2~'; (5) 

a2 2 ( m 1 n . . ,̂ x 
—-^-coshTr for every \<m<j-i. (6) 
4* V j-i) 

Examples (cf. [1], Theorems 2-5): For each of the following cases, a necessary and sufficient 
condition that / < j is an initial pair of (0) is 

i) a = 0: j-i^0 mod2; 
ii) a2 = -b: j-i=£0 mod3; 

Hi) a2 = -2b: j-i^0 mod4; 
iv) a2 = -36: 7 - i # 0 mod 6. 

If a2 = -&6 with A: e Z - {0,1,2,3}, then every pair i < j is initial. 

3. DISTRIBUTION OF INITIAL PAIRS IN RESIDUE CLASSES 

In the examples of initial pairs / < j given above, j-i lies outside of some residue class. The 
next theorem explains why. 

Theorem 3: 
a) Suppose that the recurrence (0) with b * 0 has a pair that is not initial, then there exists 

an integer m > 2 such that, for every pair / < j of nonnegative integers, we have that 
ij is initial for (0) <=> j -i # 0 mod/w. 

b) For every natural number m > 2, there is a recurrence (0) such that 
0,y' is initial for (0) o j ^ O mod m. 

Proof: 
a) By Theorem 1, there exists a natural number n>2 with dn = Q. Let m:=min{n>2: 

dn - 0} and 8.-dm+l. From (4), we deduce that dgm+r = 8qdr for all geN0, 0<r <m. 
Furthermore, since 8 * 0, we have dn = 0 0 n = 0 mod m. 

Using Theorem 1, we see that this is equivalent to our first assertion. 

b) Let C:=exp(2m/m), a:=£+l, * :=-£ , then rf, = ( ^ - l ) / ( £ - l ) , ; e N , so that 
dj - 0 <=> 7 = 0 mod m. 

Theorem 3 is proved. D 
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4. PERIODIC SEQUENCES 

If ij is an initial pair for (0), we now seek conditions under which two complex numbers 
q, Cj generate aperiodic recurrence sequence {un} with ut - q and Uj = Cj. 

Theorem 4: Given a recurrence (0) with h * 0, a pair ij in N0 with / <j, complex numbers 
cu Cj not both zero, and m GN, then the following two conditions are equivalent: 

ij is an initial pair for (0) and the solution {w„}„>0 of (0) with uf = ci9 Uj = c. has period m. (7) 

One of these four cases is valid: 

(a) 

(b) 

(c) 

(d) a = 1 ^ = < > l f 
J-* 

(8) 

Here again, £h £2 a r e ^ e z e r o s °f z2 -az-b. 

Proof: Because of Theorem 2, each of the four conditions implies that i,j is an initial pair 
for (0). Hence, it suffices to show under which condition the unique solution {un} of (0) with 
ut - c{ and Uj = Cj has period m. 

1) ^ & C,2. In this case, 

However, the property un+m =un, n> 0, is equivalent to 

[(cy-^rx<rr-i)=o. 

[(a) ^ = \,Cj = c^r, 
|(b) & = \,cj = <£{-*, 

kc) cr=^=i, 
[(d) cy=^-'=^r-

Since <£f"7 ̂  <^~7, case (d) is impossible. 

2) Ci = C2- H e r e ^ = ^ [ ( * - i > y + a ^ ^ 

o< 

<=>i 
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One can easily compute 

which is the case (d) of (8), and Theorem 4 is proved. • 
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