IDENTITIES INVOLVING PARTIAL DERIVATIVES OF BIVARIATE FIBONACCI AND LUCAS POLYNOMIALS

Hongquan Yu and Chuanguang Liang

Dalian University of Technology, Dalian 116024, China (Submitted April 1995)

1. INTRODUCTION

The work of Filipponi and Horadam in [2] and [3] revealed that the first- and second-order derivative sequences of Lucas type polynomials defined by $u_{n+1}(x) = u_n(x) + u_{n-1}(x)$ yield some nice recurrence properties. More precisely, in [2] and [3], some identities involving first- and second-order derivative sequences of the Fibonacci polynomials $U_n(x)$ and the Lucas polynomials $V_n(x)$ are established. These results may also be extended to the kth derivative case, as conjectured in [3] and recently confirmed in [7]. See also [4]. Furthermore, Filipponi and Horadam [5] considered the partial derivative sequences of bivariate second-order recurrence polynomials.

In this paper we shall extend some of the results established in [5] and derive some identities involving the partial derivative sequences of the bivariate Fibonacci polynomials $U_n(x, y)$ and the bivariate Lucas polynomials $V_n(x, y)$ defined respectively by (cf. [5])

$$U_n(x, y) = xU_{n-1}(x, y) + yU_{n-2}(x, y), \ n \ge 2, \ U_0(x, y) = 0, U_1(x, y) = 1,$$
(1)

$$V_n(x, y) = xV_{n-1}(x, y) + yV_{n-2}(x, y), \ n \ge 2, \ V_0(x, y) = 2, \ V_1(x, y) = x.$$
(2)

Moreover, we shall establish some convolution-type identities as counterparts to those given in [7]. As may be seen, these results, together with those in [6], explain in some sense the "heredity" of linearity under differentiation.

Throughout the paper we use U_n and V_n , respectively, to denote $U_n(x, y)$ and $V_n(x, y)$. The partial derivatives of U_n and V_n are defined by

$$U_n^{(k,j)} = \frac{\partial^{k+j}}{\partial x^k \partial y^j} U_n, \quad V_n^{(k,j)} = \frac{\partial^{k+j}}{\partial x^k \partial y^j} V_n, \quad k \ge 0, \quad j \ge 0.$$
(3)

Using an argument similar to that given in [1] or by induction, one may easily obtain the combinatorial expressions of U_n and V_n in terms of x and y. They are:

$$U_n = \sum_{i=0}^{\lfloor (n-1)/2 \rfloor} {\binom{n-i-1}{i}} x^{n-2i-1} y^i, \ n \ge 1,$$
(4)

$$V_n = \sum_{i=0}^{[n/2]} \frac{n}{n-i} \binom{n-i}{i} x^{n-2i} y^i, \ n \ge 1,$$
(5)

where [a] denotes the greatest integer not exceeding a.

The extension of the bivariate Fibonacci and Lucas polynomials through the negative subscripts yields

$$U_{-n} = -(-y)^{-n}U_n$$
 and $V_{-n} = (-y)^{-n}V_n$, $n > 0$. (6)

1997]

19

2. SOME IDENTITIES INVOLVING $U_n^{(k,j)}$ AND $V_n^{(k,j)}$

Theorem 1: Let n be any integer and let $k, j \ge 0$. Then the following identities hold:

(i)
$$V_n^{(k,j)} = yU_{n-1}^{(k,j)} + jU_{n-1}^{(k,j-1)} + U_{n+1}^{(k,j)}$$
,
(ii) $U_n^{(k,j)} = xU_{n-1}^{(k,j)} + yU_{n-2}^{(k,j)} + kU_{n-1}^{(k-1,j)} + jU_{n-2}^{(k,j-1)}$,
(iii) $V_n^{(k,j)} = xV_{n-1}^{(k,j)} + yV_{n-2}^{(k,j)} + kV_{n-1}^{(k-1,j)} + jV_{n-2}^{(k,j-1)}$,
(iv) $V_n^{(k+1,j)} = nU_n^{(k,j)}$, $V_n^{(k,j+1)} = nU_{n-1}^{(k,j)}$. Hence, $U_n^{(k,j)} = U_{n-j}^{(k+j,0)}$, $V_n^{(k,j)} = nV_{n-j}^{(k+j,0)} / (n-j)$.

Proof:

(i) It is easy to show by induction that $V_n = yU_{n-1} + U_{n+1}$ for any integer *n*. Hence, we have

$$V_{n}^{(k,j)} = \frac{\partial^{k+j}}{\partial x^{k} \partial y^{j}} (yU_{n-1} + U_{n+1}) = \frac{\partial^{j}}{\partial y^{j}} (yU_{n-1}^{(k,0)}) + U_{n+1}^{(k,j)} = yU_{n-1}^{(k,j)} + jU_{n-1}^{(k,j-1)} + U_{n+1}^{(k,j)}$$

(ii) From (1), we see that

$$U_{n}^{(k,j)} = \frac{\partial^{k+j}}{\partial x^{k} \partial y^{j}} (xU_{n-1} + yU_{n-2}) = \frac{\partial^{k}}{\partial x^{k}} (xU_{n-1}^{(0,j)}) + \frac{\partial^{j}}{\partial y^{j}} (yU_{n-2}^{(k,0)})$$
$$= xU_{n-1}^{(k,j)} + kU_{n-1}^{(k-1,j)} + yU_{n-2}^{(k,j)} + jU_{n-2}^{(k,j-1)}.$$

(iii) This result can be proved by a method similar to that shown in (ii).

(iv) We first prove the case (k, j) = (1, 0). This can be done by induction on n. The identity trivially holds when n = 0, 1. Suppose that $V_{n-1}^{(1,0)} = (n-1)U_{n-1}$ and $V_{n-2}^{(1,0)} = (n-2)U_{n-2}$ for $n \ge 2$. Then

$$V_n^{(1,0)} = \frac{\partial}{\partial x} (xV_{n-1} + yV_{n-2}) = xV_{n-1}^{(1,0)} + yV_{n-2}^{(1,0)} + V_{n-1}$$
$$= (n-1)xU_{n-1} + (n-2)yU_{n-2} + yU_{n-2} + U_n = nU_n.$$

From (6), it follows that

$$V_{-n}^{(1,0)} = \frac{\partial}{\partial x} ((-y)^{-n} V_n) = (-y)^{-n} V_n^{(1,0)} = -n U_{-n}$$

Similarly, we can prove that $V_n^{(0,1)} = nU_{n-1}$ for any integer *n*. Thus,

$$V_n^{(k+1,j)} = \frac{\partial^{k+j}}{\partial x^k \partial y^j} V_n^{(1,0)} = n \frac{\partial^{k+j}}{\partial x^k \partial y^j} U_n = n U_n^{(k,j)}$$
(7)

and

$$V_{n}^{(k,j+1)} = \frac{\partial^{k+j}}{\partial x^{k} \partial y^{j}} V_{n}^{(0,1)} = \frac{\partial^{k+j}}{\partial x^{k} \partial y^{j}} (nU_{n-1}) = nU_{n-1}^{(k,j)}.$$
(8)

It now follows from (7) and (8) that $U_n^{(k,j+1)} = V_n^{(k+1,j+1)} / n = U_{n-1}^{(k+1,j)}$. Hence, $U_n^{(k,j)} = U_{n-j}^{(k+j,0)}$ and $V_n^{(k,j)} = nU_n^{(k-1,j)} = nU_{n-j}^{(k+j-1,0)} = nV_{n-j}^{(k+j,0)} / (n-j)$ by (7). \Box

As expected, (i)-(iv) reduce to Identities 1-4 in [7] when y = 1 and j = 0.

FEB.

3. CONVOLUTION-TYPE IDENTITIES INVOLVING $U_n^{(k,j)}$ AND $V_n^{(k,j)}$

Theorem 2: For any $k, j \ge 0$, we have:

(a)
$$\sum_{i=0}^{n} U_{i}^{(k,j)} U_{n-i} = \frac{1}{k+j+1} U_{n}^{(k+1,j)},$$

(b)
$$\sum_{i=0}^{n} U_{i}^{(k,j)} V_{n-i} = \frac{n+k+1}{k+j+1} U_{n}^{(k,j)},$$

(c)
$$\sum_{i=0}^{n} V_{i}^{(k,j)} U_{n-i} = \left[\delta(0, k+j) + \frac{n(k+j)+j}{(k+j+1)(k+j)} \right] U_{n}^{(k,j)}$$

(d)
$$\sum_{i=0}^{n} V_{i}^{(k,j)} V_{n-i} = [1+\delta(0,k+j)] V_{n}^{(k,j)} + \frac{(n-1)(k+j)+j}{(k+j+1)(k+j)} U_{n-1}^{(k,j)} + \frac{(n+1)(k+j)+j}{(k+j+1)(k+j)} U_{n+1}^{(k,j)},$$

where $\delta(s, r) = 1(0)$ if $s = (\neq) r$ is the Kronecker symbol.

Proof:

(a) Let $A_n^{(k)} = \sum_{i=0}^n U_i^{(k,0)} U_{n-i}$. Now it may be shown by an induction argument that U_i is a monic bivariate polynomial whose highest leading term is x^{i-1} , so that $U_0^{(k,0)} = U_1^{(k,0)} = \cdots = U_k^{(k,0)} = 0$ and $U_{k+1}^{(k,0)} = k!$ Therefore, $A_k^{(k)} = A_{k+1}^{(k)} = 0$ and $A_{k+2}^{(k)} = U_{k+1}^{(k,0)} U_1 = k! = U_{k+2}^{(k+1,0)} / (k+1)$. Assume $A_{n-1}^{(k)} = U_{n-1}^{(k+1,0)} / (k+1)$ and $A_{n-2}^{(k)} = U_{n-2}^{(k+1,0)} / (k+1)$ for $n \ge 2$. Then, from the assumption and Theorem 1(ii), we have

$$A_{n}^{(k)} = \sum_{i=0}^{n} U_{i}^{(k,0)} U_{n-i} = \sum_{i=0}^{n-1} U_{i}^{(k,0)} (x U_{n-1-i} + y U_{n-2-i})$$

$$= x A_{n-1}^{(k)} + y A_{n-2}^{(k)} + U_{n-1}^{(k,0)} (y U_{-1})$$

$$= \frac{1}{k+1} (x U_{n-1}^{(k+1,0)} + y U_{n-2}^{(k+1,0)} + (k+1) U_{n-1}^{(k,0)}) = \frac{1}{k+1} U_{n}^{(k+1,0)}.$$
 (9)

From (9) and Theorem 1(iv), we have

$$\sum_{i=0}^{n} U_{i}^{(k,j)} U_{n-i} = \sum_{i=0}^{n} U_{i-j}^{(k+j,0)} U_{n-i} = \sum_{r=0}^{n-j} U_{r}^{(k+j,0)} U_{n-j-r}$$
$$= A_{n-j}^{(k+j)} = \frac{1}{k+j+1} U_{n-j}^{(k+j+1,0)} = \frac{1}{k+j+1} U_{n}^{(k+1,j)}.$$
(10)

(b) Using (10) and the fact that $V_n = yU_{n-1} + U_{n+1}$ for any integer *n* [see the proof of Theorem 1(i)], we have

$$\sum_{i=0}^{n} U_{i}^{(k,j)} V_{n-i} = \sum_{i=0}^{n} U_{i}^{(k,j)} (y U_{n-i-1} + U_{n+1-i})$$
$$= y \sum_{i=0}^{n-1} U_{i}^{(k,j)} U_{n-1-i} + U_{n}^{(k,j)} (y U_{-1}) + \sum_{i=0}^{n+1} U_{i}^{(k,j)} U_{n+1-i}$$
$$= \frac{1}{k+j+1} (y U_{n-1}^{(k+1,j)} + U_{n+1}^{(k+1,j)}) + U_{n}^{(k,j)}$$

1997]

$$= \frac{1}{k+j+1} (V_n^{(k+1,j)} - jU_{n-1}^{(k+1,j-1)}) + U_n^{(k,j)}$$

$$= \frac{1}{k+j+1} (nU_n^{(k,j)} - jU_n^{(k,j)}) + U_n^{(k,j)} = \frac{n+k+1}{k+j+1} U_n^{(k,j)}.$$
 (11)

Using Theorem 1 and an argument similar to that of (a), it is easy to prove (c) and (d). Hence, the proofs are omitted here. \Box

Finally, we give two generalizations of identity (a) in Theorem 2. It is worth mentioning that (b)-(d) possess similar generalized forms.

Theorem 3: Let $k, j, r, s \ge 0$. Then

$$\sum_{i=0}^{n} U_{i}^{(k,j)} U_{n-i}^{(r,s)} = \left[(k+j+r+s+1) \binom{k+j+r+s}{r+s} \right]^{-1} U_{n}^{(k+r+1,j+s)}$$

Proof: Let $A_n^{(k,j,r)} = \sum_{i=0}^n U_i^{(k,j)} U_{n-i}^{(r,0)}$. First, we show by induction on r that

$$A_n^{(k,j,r)} = \left[(k+j+r+1) \binom{k+j+r}{r} \right]^{-1} U_n^{(k+r+1,j)}.$$
 (12)

The case r = 0 is just Theorem 2(a). Suppose the above identity is true for some $r \ge 0$. Since

$$\frac{\partial}{\partial x}A_n^{(k,j,r)} = A_n^{(k+1,j,r)} + A_n^{(k,j,r+1)} = \left[(k+j+r+1)\binom{k+j+r}{r}\right]^{-1}U_n^{(k+r+2,j)},$$

we get

$$\begin{split} A_n^{(k,j,r+1)} &= \left\{ \left[(k+j+r+1)\binom{k+j+r}{r} \right]^{-1} - \left[(k+1+j+r+1)\binom{k+1+j+r}{r} \right]^{-1} \right\} U_n^{(k+r+2,j)} \\ &= \left[(k+j+r+2)\binom{k+j+r+1}{r+1} \right]^{-1} \left(\frac{k+j+r+2}{r+1} - \frac{k+j+1}{r+1} \right) U_n^{(k+r+2,j)} \\ &= \left[(k+j+r+2)\binom{k+j+r+1}{r+1} \right]^{-1} U_n^{(k+r+2,j)}. \end{split}$$

Therefore, we have

$$\sum_{i=0}^{n} U_{i}^{(k,j)} U_{n-i}^{(r,s)}$$

$$= \sum_{i=0}^{n} U_{i}^{(r,s)} U_{n-i}^{(k,j)} = \sum_{i=s}^{n} U_{i-s}^{(r+s,0)} U_{n-i}^{(k,j)} \quad \text{[from Theorem 1(iv)]}$$

$$= \sum_{i=0}^{n-s} U_{i}^{(r+s,0)} U_{n-s-i}^{(k,j)} = \sum_{i=0}^{n-s} U_{i}^{(k,j)} U_{n-s-i}^{(r+s,0)}$$

$$= \left[(k+j+r+s+1) \binom{k+j+r+s}{r+s} \right]^{-1} U_{n-s}^{(k+r+s+1,j)} \quad \text{[from (12)]}$$

$$= \left[(k+j+r+s+1) \binom{k+j+r+s}{r+s} \right]^{-1} U_{n}^{(k+r+1,j+s)} \quad \text{[from Theorem 2(iv)].} \quad \Box$$

FEB.

22

Theorem 4: Let $k, j \ge 0$ and $t \ge 2$. Then

$$\sum_{i_1+i_2+\cdots+i_i=n} U_{i_1}^{(k,j)} U_{i_2}^{(k,j)} \cdots U_{i_i}^{(k,j)} = \prod_{i=2}^t \left[(i\alpha - 1) \binom{i\alpha - 2}{\alpha} \right]^{-1} U_n^{(ik+i-1,ij)}$$

where $\alpha = k + j + 1$.

The proof of Theorem 4 can be carried out by induction on t and is omitted here for the sake of brevity.

4. CONCLUDING REMARKS

The bivariate polynomials defined by (3) and (4) may be used to obtain identities for k^{th} derivative sequences of Pell and Pell-Lucas polynomials by taking x = 2, y = 1, and j = 0 [6]. It is likely that this kind of bivariate treatment may also be extended to the bivariate integration sequences $\iint U_n dx dy$ to parallel some identities found in [4].

ACKNOWLEDGMENT

The authors are very grateful to the anonymous referee for comments and valuable suggestions which helped to improve an earlier version of this paper.

REFERENCES

- 1. M. Bicknell. "A Primer on the Pell Sequence and Related Sequences." *The Fibonacci Quarterly* **13.4** (1975):345-49.
- P. Filipponi & A. F. Horadam. "Derivative Sequences of Fibonacci and Lucas Polynomials." In Applications of Fibonacci Numbers 4:99-108. Ed. G. E. Bergum, A. N. Philippou, & A. F. Horadam. Dordrecht: Kluwer, 1991.
- 3. P. Filipponi & A. F. Horadam. "Second Derivative Sequences of Fibonacci and Lucas Polynomials." *The Fibonacci Quarterly* **31.3** (1993):194-204.
- 4. P. Filipponi & A. F. Horadam. "Addendum to 'Second Derivative Sequences of Fibonacci and Lucas Polynomials." *The Fibonacci Quarterly* **32.2** (1994):110.
- 5. P. Filipponi & A. F. Horadam. "Partial Derivative Sequences of Second-Order Recurrence Polynomials." (To appear in *Applications of Fibonacci Numbers* 6. Ed. G. E. Bergum et al. Dordrecht: Kluwer.)
- 6. A. F. Horadam, B. Swita, & P. Filipponi. "Integration and Derivative Sequences for Pell and Pell-Lucas Polynomials." *The Fibonacci Quarterly* **32.2** (1994):130-35.
- 7. Jun Wang. "On the kth Derivative Sequences of Fibonacci and Lucas Polynomials." The Fibonacci Quarterly **33.2** (1995):174-78.

AMS Classification Numbers: 11B83, 11B39, 26A24

1997]