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PROBLEMS PROPOSED IN THIS ISSUE 

H-526 Proposed by Paul S. Bruckman, Highwood, IL 
Following H-465, let r1? r2, and r3 be natural integers such that 

3 

^krk=n, where n is a given natural integer. (1) 

Let 
B r r r = 1 < W f . (2) 

Also, let 
C„ = ZBr f r t r, summed over all possible rx,r29r3. (3) 

Define the generating function 

F(x) = icnx\ (4) 
(a) Find a closed form for F(x); 
(b) Obtain an explicit expression for C„; 
(c) Show that C„ is a positive integer for all n > 7, n prime. 

H-527 Proposed by K Gauthier, Royal Military College of Canada 
Let q, ay and b be positive integers, with (a, b) = l. Prove or disprove the following: 

I ^ y (_\\q(br+as) j __ fqia+b-abyqqb | , ^n(\-ab) q(2ab-l) . 

r=0 s=0 ^qa^qb q 
(br+as<ab) 

M 5 V Y f -m^^f - ( l)Q(l~ab) ^2ab~l) **qabLq{a+b-ab) 

r=Q s=Q q ^qa^qb 
(br+as<ab) 

H-528 Proposed by Paul S. Bruckman, Highwood, IL 
Let Q(w) = T,p<i„e, given the prime decomposition of a natural number n = Upe. Prove the 

following: 

1997] 187 



ADVANCED PROBLEMS AND SOLUTIONS 

(A) I(-i)Q{d)^(„/,)-a(,) = 0; 
d\n 

(B) JH-lf{d)L^nldyQ{d) - 2Un, where Un = f l ^ i * 

SOLUTIONS 
Poly Forms 

B-508 (Corrected) Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol 34, no. 1, February 1995) 

Define the Fibonacci polynomials by F0(x) = 09 Fl(x) = l, Fn(x) = xF^x) + Fn_2(x), for 
n>2. Show that, for all complex numbers x and y and all positive integers n, 

n~l 1 fn + k\^l_.kj7 (xy-4 
WM-ZTTi i V . < » » * M ^ - W &=0 

As special cases of (1), obtain the following identities 
w-I / i\n-k+l 

Fn{x)Fn{x +1) = n g L | ^ - l ^ +
+ * jFi+1(x2 + x + 4); (2) 

• V + 4 ^ 
&=o ^/v _r± ^ '" ' ' V x J 

n-l / i\n-k+l f . j 

(-1) n + k 

x^G; (3) 

F2„_1(x) = (2«-!)2X^(22^[1jx^+ 1(4/x). (6) 

Solution by the proposer 
We also consider the Lucas polynomials defined by L0(x) = 2, Z^x) = x, Ln{x) = x L ^ x ) + 

Z^_2(x)? for « > 2 . It is known that 

/ r ( x ) = « W ^ W : a n d ^X) = a{xf+P(x)\ (7) 

where a(x) = | ( x + Vx24-4) and p(x) = j(x- Vx2+4)? and that 

Integrating the latter equation and noting that Lf
2n(x) = 2nF2n(x) and L2n(0) = 2 gives 
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Since both sides of the stated equation (1) are analytic functions of x and y, it suffices to 
prove it for real x and y such that x > y > 0. Let 

ti = iU(x2+4)(y2 + 4)+xy-4) 
and 

v = ^(x2+4)(y2+4)-xy + 4). 

Then we have u > 0 and v > 4. From (8) it follows that 

where / = V(~0 anc* 
^^-.g^,)^, 

y M + V 

Since u-v = xy-4 and wv = (x+_y)2, it is easily seen that 

Aj = {xy- 4)Aj_! + (x + yf Aj_2, j>2, 

so that, by AQ = 0 and A1 = 1, we must have 

4 = (*+W*vzi jyeNo. (10) 
) 

Simple calculations show that 
a( 4uf = \ (2w + 4 + 2 v ^ O + 4)) = a(x)a(j), 

/?(V^)2=|(2i/ + 4 - 2 V ^ ^ ^ 
and, since x>>>, 

a(/ V^)2 = - | ( 2v - 4 + 2^v(v-4)) = a(x)p(y\ 

(3Q Sf = - 1 (2v - 4 - 2Vv(v-4)) = /?(x)«(y). 

From these four equations and (7), it follows that 

Fn(x)Fn(y) = ~2nS—-———• (! 1) 
1/4-V 

Now, the desired identity (1) follows from (9), (10), and (11). 

Using the properties Fy(-x) = (-iy~lFj(x)y F2j(0) = 0, and F2J+l(0) = 1, we show that (2)-
(6) are all special cases of (1). Since we wish to exhibit some particular cases, we also note that 
F„(4) = F3„/2, Fn(3i) =!-%„, F2n{S) = 4~5FJ3, F2n_,(S) = L4„_2/3, and 5^nF„(41S) = 
(5" - (-1)") / 6. Also, let Pn = F„(2) denote the rP Pell number. 

(2): In (1), replace x by —x and then take y = x + \. We note the interesting particular case 
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v.-g^tstfO'w* n-l ( i\«-£+l 

fc=0 

(3): Take y = 4/x,x^O. For x = 1 and x = 2, we obtain, respectively, 

^F3n=2n[^-^-(n
dtlkA25\ and P„2 = „ I ^ f c f k . 

With x = -v/5, eq. (3), after replacing n by 2« and « by 2 » - 1 , produces the curious identities: 

_ 36n (ft 1 ("2» + 2A:>l0-,tc»-i-t. 
4"-25"-ltoM + lV4k + l) ' 

_18(2w-l){ft 1 f2w + 2 ^ - n o i t ^ i - f c 
^-2- 52„-I + 1 2 . 2 ^ + 1^ 4* + l J 8 1 5 • 

(4): Take y = -x. For x = l,x = 3/", and x = 2, we obtain, respectively, 

m h *+1 l2*+1J ' 
1 (n + k^sfc 

and n-\ ( i\n-k+l 

I-
4=0 

(5): Take j ^ = x and use the Binet form of the Fibonacci polynomials. For x = 3/, this gives 

B-2 _ « V (-~~1-) " + * W + I 4*+^ 
5 & ifc + 1 12*+ 1 

(6): In (1), replace n by In-1 and then set j = 0. For x = 1, x = 4, x = V5, and JC = 2, we 
obtain, respectively, 

2n-l2^2 (-\f(2n + k-f _ 2 » - l 2 y (-l)V: 
_ , 2/t + l J ^ + 3 ' 

^ ^ V m h t V W , ,=0 * + i l 2>t+i ; • " * « » 

_ 2#l - 1 ^ (-1)* ( 2W + k - 1 Vci+l , nt+K 

^„-,-(2» 1)2. ^ + 1 ( 2* + l J 2 ^ 

k=0 

and 2«-2 
rfc+i 

Jt=0 

f̂&£? solved by P. Bruckman and A. Dujella* 
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Pell MeU 

H-510 Proposed by H.-J. Seijfert, Berlin, Germany 
(Vol 34, no. 29 May 1996) 

Define the Pell numbers by PQ = 0, i> = 1, Pn = 2Pn_x + Pn_2 for n > 2. Show that 

Pn = Z ( - l ^ - ^ V ^ / 2 ] ^ + * ^ for n = 1 , 2 

where [ ] denotes the greatest integer function and A„ = {k G{0,l,...,n-l}\3k ^2n (mod 4)}. 

Solution by the proposer 

First, we prove two theorems concerning the Fibonacci polynomials defined by 

(l-xz-z^iXiMA (1) 
which are also of interest in themselves. 

Theorem 1: For all real x one has 

FU*)=if^AVV"^-2^where /2=-1-
Jt=oV ' 

Proof: Consider the special Jacobi polynomials defined by 

(l-2xz + z2r=tci(x)z", 7 = 1,2,.... (2) 

It is well known [1, p. 374] that C{ has the derivatives 

^Cg(x) = 2*^*-|) 'cff(s). (3) 

If we substitute z by iz in (2) and compare the newly obtained equation with (1), we see that 
FnJtX{x) = inCl

n{x 12i). Thus, we have (3), and simple calculation gives 

^Fn+l(x) = k\rkC%(x 120. (4) 

Since Fn+l is a polynomial of degree n, and since [1, p. 374] 

nk+\n\_(n + k + i\ 
^n-kW-y 2k+\ y 

the stated equation follows from (4) and Taylor's theorem. Q.E.D. 

Theorem 2: For positive reals x one has 

where A = (x2 + 4)1/2 and ak-{n-k)n 12-karccos(x/A). 

Proof: Since i - ei7vl2 and x - 2/ = A exp(-i arccos(x / A)), Theorem 1 gives 
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fc=(A / 

which implies the stated equation by separating the real part. Q.E.D. 
Now we are able to prove the proposer's equation. Using Pn+1 =Fn+l(2) and cos(;r/4) = 

1 / V2, Theorem 2 gives 

where A:= 2J/2 COSQTT/ 4) for all integers j . Using the addition theorem of the cosine, we easily 
find that, for all integers r, 

A4r = (-\J22\ A4r+l = (-iy22r, A4r+2 = 0, A4r+3 = (-iy+l22r+l, 

or, in a more compact form, 

f(-l)[0"+1)/412^'/2], i f / #2 (mod4), 
J [0, otherwise. 

Observing that [(3k - 2ri) 12] = [3k 12] - n, we see that (5) and (6) prove the stated equation with 
w + 1 instead of/?. 
Reference 
1. Ryshik & Gradstein. Tafeln Zfll Tables. Berlin: VEB Deutscher Verlag der Wissenschaf-

ten, 1963. 
Also solved by P. Bruckmam 

Editorial Note: The editor wishes to acknowledge that H.-J. SeifFert also solved H-504 and 
H-505. 

• > • > • > 
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