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Let (an) be a given sequence. The bracket function transform (sn) is defined by 

( i ) 

Let S(x) denote the formal power series of the sequence (sn), that is, 

5 ( * ) = £ ^ B . 

H. W. Gould [2] pointed out that 

1 - x ̂  1 - x 

The aim of this paper is to study the effect of the terms y^-, -}T, and xn in (2). We replace these 
terms with the powers -^-—, •———, and xtn and find the coefficients of the modified series. r (i—x)r (i-xny 

First, we study the effect of the term -^. If the term -^ is deleted from (2), that is, if 

(2) 

00 -^.n 

n=1 A X W=l 

then T(x) = (1 - x)S(x) and, consequently, 

*n= Sn~ Sn-l ~ zL, 
fc=l 

(see [2], Eq. (8)). More generally, let 

T(x) = 7 r 1 ^ l a » 

n-\ 

(1-xY^ "l-x" 

d\n 

r e R 

(3) 

(4) 

(5) 

What are the coefficients of T(x) ? 
a\ _ a(a-l)---(a-n+\) LetC) 

(see[l],Eq.(l.l)). Thus, 

a eR. Then 

l f " V = (l + x)a 
71=0 

(1 ^M^'h 
(6) 

(7) 
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It is known (see [2], Eq. (5)) that 
1 

(1-*)(!-**) t = I | ^ V = Z([n/*] + l)^ 
«=0 

Combining (7) and (8) and applying the Cauchy convolution, we obtain 

1 = i S(-iy (l-xY(l-xk) %{fa 
For the sake of brevity, we write 

r + 1 
i 

n-i + k 

-v 

i=0 

n-i + k 

(8) 

(9) 

(10) 

Now we use (9) in finding the coefficients of T(x) in (5). In fact, 

1 jZ = t°Slc{»,k,r)ir T(x) = Yaakxk 

& (l-x)'(l-**) & 

= fjakxkfjC(n-k,k,r)x"-k=Yjx"YJC{n-k,k,r)ak, 

n=0 

oo n 

k=l n=k 

which shows that the coefficients of T(x) in (5) are 

w=l k=l 

tn=Y,C{n-k,k,r)ak, (11) 
k=l 

where C(n - k, k, r) is as defined in (10). Note that 

(i) if r = 1, then C(n-k,k,r) = [n/ k], and thus tn=sn, which is the bracket function 
transform (1), 

(ii) if r = 0, then C(n-ky k, r) = [n/k]-[(«-1)/k], and thus (11) reduces to (4). 

Second, we study the effect of the term —l—. If the term - ^ is deleted from (2), that is, if 

1 x n=\ 

then 

More generally, let 
i = l 

i oo n 

7Yx) = — Y e . „ , , seR 

(12) 

(13) 

(14) 

What are the coefficients of T(x)l 
By (6) we obtain 

1 
•k\s ( l-x)(l-x*) ' 

= (l + x + xz + --)\ 1 ry<i) ~Sh2k-> 
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= (l + x + - + x*"1)+ 1- T (X*+X*+1 + - + JT"-1) 

+ 11-1 !-j+( 2 
s \ \fJLk . „2*+l (x"+x2*+1 + - + x w - i ) + 

I/Jfc] ' 

Applying Equation (1.9) of [1], we obtain 

i = f | W * 
(l-x)(l-x*)' £0l [«/ 

We can use this formula in finding the coefficients of T(x). In fact, 

which shows that the coefficients of T(x) in (14) are 

(15) 

**> 

_Af[n / / t ] + j - l ^ 
at- (16) 

Note that 

(i) if 5 = 1, then $"[ffiy[1) = [n/k], and thus tn = sn, which is the bracket function 
transform (1), 

(ii) if s = 0, then f "^^ 1 ) = 1, and thus (16) reduces to (13). 

Third, we study the effect of the term x". Let 
1 °° Y1" 

V ' 1-x^J " 1 - x " ' 
(17) 

Then, by (8), 

7"(x) = X ^ 1 00 CO 

U (1-xXl-x*) & = X«***£([«/*]+i)*" 
00 CO oo [«/f] 

(18) 

= Z ^ « * I ( [ ( » - * ) / * ] + l ) x , f " * = I x " I ( [ i i / * ] - ' + l)fl*, 

which shows that the coefficients of T(x) in (17) are 

[nit] 

n=t k=l 

'„=Z (["/*]- ' + !)«* (19) 
fc = l 
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Note that if t = 1, then tn=sn, which Is the bracket function transform (1). 
What is the effect of deleting the term xn In (2), that Is, what are the coefficients of 

^'jhp'T1?1 (20) 

Proceeding In a way similar to that in (18), we obtain the coefficients of T(x) In (20) as 

' » = Z ( [ » / * ] + i k = • * « + « , ( 2 1 ) 
k=l 

provided that the series S^Li ^ is convergent and its sum Is equal to a. 
Finally, we note that the three cases (5), (14), and (17) could be treated simultaneously. In 

fact, let 
1 °° Ytn 

T(x) = —-—Ya— , ry$ERjGX+. (22) 
V } (l-x)r£t "(l-*")" ? l ; 

Then 

tn = f,C(n-tk9k,r9s)ak, (23) 

where 

c^,^-irf%v,r) 
This can be proved in a similar way to the above three cases. For the sake of brevity, we omit the 
details here. 
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