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1. INTRODUCTION 

The Fibonacci polynomials are defined by the recursion relation 
Fn+2{x) = xF„+l(x) + Fn(x), (1) 

with the initial values Fx(x) = 1 and F2(x) = x. When x = l, Fn(x) is equal to the /1th Fibonacci 
number, Fn. The Lucas polynomials, Ln(x) obey the same recursion relation, but have initial 
values Li(x) = x and L^x) = x2 +2. 

Explicit expressions for the zeros of the Fibonacci and Lucas polynomials have been known 
for some time ([1], [2]). The zeros of F2n(x) are at the points 

±2isin — , * = 0,l,...,w-l. (2) 

The zeros of the odd polynomials F2n+l(x) are at 

'2k + \\n 
K2n + \) 2 

Similarly, for the Lucas polynomials, the zeros of /^(x) are at 

±21 sin * = 0,l, . . . ,w-l. (3) 

±2/ sin 

and the zeros of L2n+i(x) are at 

2n 
I * = 0,!,...,«-!, (4) 

± 2 s i n - ^ ~ , A = 0,l , . . . ,w-1. (5) 
2n + \ ' ' ' w 

With a view toward finding clues to obtaining similar analytic expressions for the zeros of the 
Tribonacci polynomials [3] and other generalizations of the Fn(x), it is of interest to study the 
properties of the above expressions in more detail, looking for patterns that may generalize. In 
what follows, it will be shown that the zeros of each Fn(x) and Ln(x) satisfy a number of rela-
tions among themselves, many of which can be derived without any knowledge of the explicit 
formulas given above. The results presented here divide into two parts: in §2, expressions for the 
elementary symmetric polynomials of the zeros of each polynomial are derived. Then in §3, the 
zeros are described in terms of points on the trajectories of a dynamical system. In §4, some 
comments are made regarding the generalization of these results to the Tribonacci case. 
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2e SYMMETRIC POLYNOMIALS 
Consider the elementary symmetric polynomials (Jj(xh x2,..., xm) over the set x1? x2,..., xm, 

where 0<j<m. These polynomials are defined by the relation 
m m 

U(t + h) = lvj(h,-,xm)-tm-J- (6) 

Clearly, oj is a polynomial of order j in its m arguments. Note that by multiplying out the left-
hand side and comparing powers oft on each side, we can write the o} as 

m-\ m-\ m—\ j 

4=0*2=4 /,=/,_, 1=1 

The idea in the following theorems is to derive general formulas for the symmetric polynomials 
over the zeros, using the following algebraic representations of the Fibonacci and Lucas poly-
nomials [2]: 

(n-!2 

k=Q ^ J 

n-k-t\xn-2k-i^ ( g ) 

n (n-k 

and 

where \p] means the greatest integer less than or equal top. 
First, let us consider the Fn(x). Since the zeros of Fn(x) are pure imaginary and come in 

complex conjugate pairs, we will concentrate on their magnitudes. Thus, for the even polyno-
mials F2n(x), denote the zeros by 

x0 = 0, ±ixk9 * = 1,2,...,«-1, (10) 

with xk > 0 for k > 0. As for the odd polynomials, F2n+l(x), denote the zeros by 

±ixk, * = 0,1,. . . ,«-1, (11) 

where 

,2/1 + 1° 2 / 

Theorem 1: The j * symmetric polynomial over the squares of the zeros of F2n(x) is given by 

xfc = 2 s i n | ^ i 4 l * = 0,1 n-1 . (12) 

Proof: Clearly, since the zeros are of the form given in formula (10) above, the F2n(x) can 
be factored as follows: 

n-l 

F2r,(%) = %Yl(x-^k)(X + iXk)- (14) 
k=l 

We can then regroup this expression in the following manner: 
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n-l 
F2„(x) = xYl(x2+xl) 

n-l n-l 
= x\ x2"-2 + x2""4X A + x2"-6X x2x\ + x2n-% £ x2x2xf + • • • + n x 2 \ 

[ lc=l j*k j*k*l k=l J 

n-l I J } (15) 

J=l [ W , ^ <•••</; 1=1 J 

/=i 

But we also know that 
n-l 

r2n-2j-l 

(16) 

Setting the right-hand sides of equations (15) and (16) equal and equating the coefficient of 
each power of x, we arrive at the desired result. • 

Alternatively, this theorem and those that follow can be proved by applying standard trigono-
metric identities to the explicit formulas for the zeros that were given in equations (2) through (5). 

Corollary 1: The zeros of the even polynomials F2f1(x) satisfy the following relations for fixed m 

k=l 

(ii) |X2=2(»-1). 
fc=0 

Proof: These follow immediately by setting j = 1 andj = n-1, respectively, in the previous 
theorem. • 

Turning now to the odd Fibonacci polynomials, the following result can be quickly proved in 
the same manner. 

Theorem 2: The y* symmetric polynomial over the zeros of F2n+l(x) is given by the expression 

^(^..^„2-.)=(277')- a?) 
Corollary 2: For fixed n, the zeros of F2n+l(x) satisfy the following relations: 

fi) U4 = h 

(ii) | > 2 = 2 « - 1 . 

Proof: In the previous theorem, set j = 1 to obtain (i) and j = n to obtain (ii). • 
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Theorems 1 and 2 have been checked numerically for the polynomials Fx(x) through Fl3(x). 
The corollaries have been checked numerically for all values from n = 1 to n = 20, as well as for 
selected values up to n = 1000. The numerical results show perfect agreement with the results 
predicted here. 

X THE DYNAMICS OF THE ZEROS 

The goal here is to obtain the zeros of F„(x) as iterates of some function (independent of/?) 
which maps the zeros of Fn_x(x) to the zeros of Fn(x). This procedure is complicated by the fact 
that the number of zeros increases with increasing n, but that will be dealt with below by breaking 
up the zeros into one parameter families, with n as the parameter. A second parameter, m, will 
distinguish one family from the next. Although the recursion relations derived below contain no 
information that is not already implicitly contained in formulas (2) through (5), it provides a 
different perspective on this information. Also, this recursion relation method can provide an 
algorithm that may be more efficient than other methods for numerical calculations of zeros for 
other classes of polynomials when the zeros do not have such simple analytic formulas. 

As in earlier sections, rather than dealing directly with the zeros, ±/Jt •, we will deal only with 
their magnitudes, Xj. However, for our purposes here, it is convenient to alter our notation 
slightly. For a fixed value ofn, label the magnitudes of the zeros in decreasing order as follows: 
xi^ > x2^ >"> x^. The superscript labels the polynomial of which it is a zero, and the sub-
script labels the relative size of the zero. Using this ordering, x%l always vanishes for even n. 
For a generic zero x^ of Fn(x), we will call m the row number of the zero, for reasons that will 
become apparent later. The idea is to find a function /w:9i->0^, independent of w, such that 
fm(x^) -~xj£+l\ As we will see below, the zeros x£?) for all n will then be obtainable by applying 
the appropriate fm to the initial value x = 0, and then iterating a certain number of times. The 
main result is Theorem 3 below. 

Theorem 3: For all n > 2, the zero in the mth row of Fn+l(x) is related to the zero in the /w* row 
of Fn(x) by the following mapping: 

m J^WY 
where 

am(x) = tan2 
mm 

tan-1 ^ f + 2KKX 

i x2 tan l J^h + 27iK%+mK 
•2nK2 (19) 

where Kx and K2 are a pair of integer constants. 

Proof: Assume for the sake of definiteness that n is even. [If n is odd, the proof proceeds in 
an identical manner, except that the roles of equations (2) and (3) are reversed.] Referring to 
equations (2) and (3), the integer k is related to the row number m by k = n-m, so that these 
equations tell us that the zeros of F„(x) and F„+l(x) are at 
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xiT+1) = 2sin 2n + l-2rn\n 
2n + l )~2 

- 2 cos 

where we have used the fact that sin (f- - ft) = cos ft 
Now, note that 

M {imn I mn . . mn XL . . , 
exp —— = cos + / s i n — - - ~ m ~ + iJ 1-

FV 2n J In In 2 \| 
Taking the natural logarithm of the last equation gives 

mn 

fx^ 
. 2 , V L J 

imn 
In 

In 
x(«) (XW\2 

2 i {2 ; + 2inKh 

(21) 

(22) 

(23) 

where Kx is an integer that specifies which branch of the Riemann surface is used to evaluate the 
logarithm. Now, solve for 2w: 

2w = - IMTT 

mif + / i-
(24) 

+ 2azK, 

Repeating the procedure of the previous paragraph, but this time applying it to exp (^_ ) , we 
find 

2n + l = - imn 

in 
>+D 

•+i, 1 -
,(»+i)\ 

(25) 

-f 2mKi 

where, again, Z"2 is an integer constant. 
Substituting equation (24) into equation (25) yields 

imn imn 

In 
«,(*+!) 

-H - i J l -
V 2 J 

2mK2 In 
,(") 

• + / J 1 -

• + 1. (26) 

2 ^ 

This result can be simplified. Note that, for any variable y such that - 2 < j < 2 , we can 
define a pair of polar coordinates (r, ft) via 

H 1 -^ = r e x p ; * -
Clearly, 

r = l, 0 = tan~ 

Taking the natural logarithm of equation (27), 

4-y2 

y 

(27) 

(28) 
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In = ln(/*expz0) 

= lnr + i$ (29) 

= / tan' 

Finally, applying equation (29) to both sides of formula (26), and then solving for x^"+1) gives 
the desired result. D 

Note that two integer constants, Kx mdK2, appear in this result. From examining equation 
(19), it is clear that Kx is completely arbitrary; changing its value will simply change the argument 
of the tangent by a multiple of In. Because of the periodicity of the tangent, the value of Kx has 
no effect on the results and will henceforth be set to zero. 

The second constant, K2, enters into the proof in the same way but, curiously, its value does 
affect the positions of the zeros. Theorem 3 has been checked numerically by using it to predict 
the first 40 zeros for all cases from m = ltom = \0. In each case, the theorem gives the correct 
results, provided that K2 is set equal to zero. Allowing K2 to have nonzero values seems to lead 
to interesting effects; these are currently under investigation. But in the remainder of this paper, 
we will set K2 = 0 (or, in other words, we will restrict ourselves to the principal branches of all 
logarithms), since this is the case that gives the correct zeros for the Fibonacci polynomials. 

Theorem 3 tells us that families of x^ with fixed m form trajectories of a dynamical system, 
with n playing the role of a discrete time variable. Points are moved along each trajectory by 
repeated iteration of the function fm(x) = 2/ ^l + am(x). This situation is illustrated in Figure 1. 

J I L U 
10 12 14 16 IS 

FIGURE 1: The Zeros of the Fibonacci Polynomials 
(Only zeros with moimegative imaginary part are shown) 
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It can be seen that the integer m labels how many rows the trajectory is from the outside of the 
diagram. It is also clear that each trajectory begins at a root of the form x^ - x^m) = 0. Since 
each iteration of fm increases n by one, and since each trajectory starts at an initial value of n§ -
2m, it takes n-2m iterations to reach a fixed final value of n. As a consequence, we have the 
following corollary. 

Corollary 3: The zero of Fn{x) with row number m can be written as 

4n)=/i""2m)(0), (30) 

where f^j) means the 7th iterate of fm. 

Some observations can be made about this result. First, it is clear from the form of fm(x) 
that each trajectory approaches an attracting fixed point situated at x(oo) =2. This implies that as 
n -> oo? x^ -> 2, for all m. 

Second, a similar result is easily proved for the zeros of the Lucas polynomials by using the 
same method. In the Lucas case, we still have fm(x) = 21 ^Jl + am(x), but now the form of am 

changes: 

ajx) = tan (2m-l)n-
(2m - 1)TV + 2 tan"1 J±=jt 

(31) 

Here, we have again set Kx = K2 = 0. There is one complication arising here that did not occur in 
the Fibonacci case: iteration of the above function does not simply carry us along the m^ row. 
Instead, the trajectory jumps back and forth between two adjacent rows. More specifically, 
repeated use of am will give us the zeros in the mih row for ^(x) and those in row m + l for 
L2„+i(x). This occurs because m enters the expressions for the even and odd zeros in the same 
manner for the Fibonacci case [compare the numerators of the last expressions in equations (20) 
and (21)], while in the corresponding expres-sions for the Lucas zeros, it enters through a factor 
of (2m +1) in one case and (2m -1) in the other. Although the trajectory now alternates rows, we 
still recover all of the zeros as we run over differing values ofm, as has been verified numerically. 

Some observations can also be made about the properties of the am(x). For the Fibonacci 
case, define 

*? = EW - <4> = ".«>) = -an'1 ' " ' * 
Then we have the following propositions. 

Proposition 1: For all m and «, 

-mn 

ff$ = W*- (32) 
Proof: We know that 

«(-) _ M-frff)2 _ 4-/.'Off"0) 
K ~i (tfy ~v /m

2(ei}) ' C33) 
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Substituting fm(x) = 2/ ^Ja-ham(x) into this expression and simplifying the fraction quickly leads 
to equation (32). • 

Proposition 2: The argument of the tangent in a^ is always a rational multiple of n. In other 
words, the quantity 

tan-1/?^ 
t a n " 1 / ? ^ ( 3 4 ) 

is rational for all n and m. 

Proof: We know [by equations (20) and (21) or, alternately, by equations (2) and (3)] that 
all of the zeros can be written in the form x^ = 2cosU-7t) for some pair of integers p and q 
(depending on m and n). Substituting this expression into the definition of 0^\ we find that 
Bjp = tm.j7r, or taif 1/%) = j n. Substituting this into the quantity in formula (34), we find that 
it equals -~fy which is clearly rational. D 

Note that 0^ describes the tangent of an angle inscribed in a right triangle of hypotenuse 
equal to 2, and adjacent side of length x%\ The hypotenuse remains constant, while the adjacent 
side increases in length with increasing n or decreasing m. A deeper understanding of the geomet-
ric meanings of aff and 0^ may help provide some insight into the properties of the zeros of the 
Tribonacci polynomials and other generalizations of the Fn{x). 

4. TRIBONACCI POLYNOMIALS 

The Fibonacci and Lucas polynomials have been generalized in various ways. The simplest 
generalization is that of the Tribonacci polynomials, Tn(x) (see [3]), which obey the relation 

Tn+3(x) = x2Tn+2{x) + xTn+l(x) + Tn{x), (35) 

with T0(x) = 0, Tx(x) = 1, T2(x) = x2. The Tn(x) are often written in terms of the trinomial coef-
ficients (y) , which are defined implicitly by the following equation [3]: 

£(*)= S r-j-1)*2"-3'-2. (36) 
j=o V J h 

While numerical work has been done concerning the zeros of the Tribonacci polynomials, 
explicit expressions for them are not known, so deriving formulas of the sort presented in §2 of 
this paper would be of interest, as they could provide valuable clues to the possible forms the 
zeros could have. Below is a theorem giving expressions for the symmetric polynomials of the 
Tribonacci zeros. Again, these results are easily verified numerically. The proofs are omitted, as 
they are identical to those of §2, except that equation (36) replaces equation (8). 

The zeros of the Tribonacci polynomials form a set that is invariant under rotations in the 
complex plane by multiples of 2^/3, so the zeros can be divided into three subsets: {xy}, foe2*73}, 
and {xfe~27r/3}, for an appropriate set of xi. 

Theorem 4: 
(i) The zeros of T3rj+l(x) have elementary symmetric polynomials of the form 
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*J(xl...,xl) = (-iy^njJ^. (37) 

(ii) The zeros of T3n+2(x) satisfy the following relation: 

^(xl...,xln) = (-iy{3n-j + l\. 08) 
(Hi) The zeros of T3n(x) satisfy the following relation: 

^(^3,...,x2V1) = (- l){3"7_ 1)3 . (39) 
By setting j = 1 in the above theorem, we have the following corollary. 

Corollary 4: 

(i) The zeros of TZn±x(x) satisfy Z?=i x\ - ~-(3n -1). 

(ii) The zeros of T3n+2(x) satisfy X ^ x ^ = -3w. 

fill) The zeros of ZJ^x) satisfy Xj^1 x3
k = -(3/i - 2). 

As for the results presented in §3 of this paper, their derivation depended on prior knowledge 
of the explicit formulas for the zeros of the Fn(x). However, the logic could be reversed: //for-
mulas analogous to the fm could be found for the Tn(x) by fitting functions to a few of the 
numerically known zeros, then explicit formulas for the positions of all the zeros could immedi-
ately be generated. Finding the fm functions and finding the zeros are thus equivalent problems, 
but it could turn out that one form of the problem is easier than the other. Finding the fm func-
tions could be aided by further analysis of the geometrical content of the results of §3. and of how 
the geometry changes in the Tribonacci case. 
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