ON A CLASS OF NON-CONGRUENT AND NON-PYTHAGOREAN NUMBERS

Konstantine Dabmian Zelator*
Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA 15213

(Submitted August 1993)
In one of his famous results, Fermat showed that there exists no Pythagorean triangle with integer sides whose area is an integer square. His elegant method of proof is one of the first known examples in the history of the theory of numbers where the method of infinite descent is employed. Mohanty [3] has defined a Pythagorean number as the area of a Pythagorean triangle and studied properties of such numbers. Fermat has thus shown that no Pythagorean number can be an integer square.
To extend Fermat's result, one may ask if there exists a Pythagorean triangle whose area is p times a perfect square, p a given prime. It turns out that, for certain primes $p \equiv 1,5,7(\bmod 8)$, this is the case; for example, the primes $p=5,7,41$ have this property. For $p=5$, the triangle $\left(3^{4}-1\right.$, $8,3^{4}+1$) has area $A=5(3 \cdot 4)^{2}$. For $p=7$, the triangle $\left(4^{4}-3^{4}, 2 \cdot 4^{2} \cdot 3^{2}, 4^{4}+3^{4}\right)$ has area $A=7 \cdot(3 \cdot 4 \cdot 5)^{2}$. For $p=41$, the triangle $\left(5^{4}-4^{4}, 2 \cdot 5^{2} \cdot 4^{2}, 5^{4}+4^{4}\right)$ has area $A=41 \cdot(5 \cdot 4 \cdot 3)^{2}$. However, as shown below, no Pythagorean number can equal p times an integer square if p is a prime congruent to $3(\bmod 8)$.

A natural question to ask is whether there exists a number $k \equiv 3(\bmod 8)$ and a Pythagorean number which equals k times a square. There is no reason to believe that such a number of k does not exist. Furthermore, one may attempt to find infinitely many such numbers k.

In this paper the following result is proven. Let k be an odd squarefree positive integer with $k \equiv 3(\bmod 8)$. Assume that k belongs to one of the following families:
Family (a): $k=p_{1}$, where p_{1} is a prime with $p_{1} \equiv 3(\bmod 8)$.
Family (b): $k=p_{1} p_{2}$, where p_{1} and p_{2} are primes such that $p_{1} \equiv 5(\bmod 8)$ and $p_{2} \equiv 7(\bmod 8)$, with p_{1} being a quadratic nonresidue of p_{2} (so, by quadratic reciprocity, p_{2} is also a nonresidue of p_{1}).
Family (c): $k=p_{1} p_{2} \ldots p_{n}, n \geq 2$, where $p_{1} p_{2} \ldots p_{n}$ are distinct primes such that $p_{1} \equiv 3(\bmod 8)$, $p_{2} \equiv \cdots \equiv p_{n} \equiv 1(\bmod 8)$; the primes p_{2}, \ldots, p_{n} are all quadratic residues of each other, and they are all quadratic nonresidues of p_{1} (so, by quadratic reciprocity, p_{1} is a quadratic nonresidue of p_{2}, \ldots, p_{n} as well).
Family (d): $k=p_{1} p_{2} p_{3} \ldots p_{n}, n \geq 3$, where $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$ are distinct primes such that $p_{1} \equiv 5$ $(\bmod 8), p_{2} \equiv 7(\bmod 8)$, and $p_{3} \equiv \cdots \equiv p_{n} \equiv 1(\bmod 8)$, with p_{1} being a quadratic nonresidue of p_{2} (so, by quadratic reciprocity, p_{2} is a nonresidue of p_{1} as well) and p_{3}, \ldots, p_{n} being quadratic residues of each other; and either with p_{3}, \ldots, p_{n} being quadratic residues of p_{1} (so, by quadratic reciprocity, p_{1} is a quadratic residue of p_{3}, \ldots, p_{n}) and with p_{3}, \ldots, p_{n} being quadratic nonresidues of p_{2} (so, by reciprocity, p_{2} is a quadratic nonresidue of p_{3}, \ldots, p_{n}) or vice-versa.

[^0]Theorem: Let k be an odd squarefree positive integer, $k \equiv 3(\bmod 8)$ and suppose that k belongs to one of the families (a)-(d) listed above. Then there is no Pythagorean triangle whose area equals k times an integer square.

Proof: Let (A, B, C) be a Pythagorean triple whose area is k times a square, $\frac{1}{2} A B=k D^{2}$. One easily sees that we may assume $(A, B)=1$, for if it were otherwise, the problem would reduce to the case of a Pythagorean triple $\left(A_{1}, B_{1}, C_{1}\right)$ with $\left(A_{1}, B_{1}\right)=1$ and $\frac{1}{2} A_{1} B_{1}=k D_{1}^{2}$. By assuming that (A, B, C) is a primitive Pythagorean triple, we may set $A=M^{2}-N^{2}, B=2 M N$, $C=M^{2}+N^{2}$, for positive integers M, N with $(M, N)=1$ and $M+N \equiv 1(\bmod 2)$. Thus, from $\frac{1}{2} A B=k D^{2}$, one obtains

$$
\begin{equation*}
(M-N)(M+N) M N=k D^{2} . \tag{1}
\end{equation*}
$$

Since $(M, N)=1$ and $M+N \equiv 1(\bmod 2)$, we have

$$
\begin{align*}
(M, N) & =(M, M+N)=(M, M-N)=(N, M-N) \\
& =(N, M+N)=(M-N, M+N)=1 . \tag{2}
\end{align*}
$$

Thus, all the factors $M-N, M+N, M$, and N on the left-hand side of (1) are pairwise relatively prime. Therefore, since k is squarefree, there are precisely four cases or possibilities and their ramifications.

The first possibility is that precisely one of the factors on the left-hand side of (1) is equal to k times a square, while the rest of them are perfect squares.

The second possibility is that one of $M+N, M-N, M$, or N equals a times a square, another of the factors equals b times a square, and the other two factors are integer squares with $a b=k$ and $1<a, b<k$.

The third possibility is that one of the factors equals a times a square, another equals b times a square, a third equals c times a square, and the fourth is just an integer square with $a b c=k$ and $1<a, b, c<k$.

The fourth possibility is that $M=a M_{1}^{2}, N=b N_{1}^{2}, M+N=c U^{2}, M-N=d V^{2}$, with $a b c d=k$ and $1<a, b, c, d<k$.

Case 1. Exactly one of $M+N, M-N, M$, or N equals k times an integer square, while the remaining three are integer squares.

First, suppose $M=k M_{1}^{2}, N=N_{1}^{2}, M-N=U^{2}, M+N=V^{2}$. Consequently, we obtain

$$
\begin{align*}
& k M_{1}^{2}-N_{1}^{2}=U^{2}, \tag{3}\\
& k M_{1}^{2}+N_{1}^{2}=V^{2} . \tag{4}
\end{align*}
$$

Thus, $2 k M_{1}^{2}=U^{2}+V^{2}$ and $(U, V)=1$ by (2). However, the last equation constitutes a contradiction, since $k \equiv 3(\bmod 4)$, and it is well known that no prime congruent to $3(\bmod 4)$ divides the sum of two relatively prime integer squares.

Next, suppose that $N=k N_{1}^{2}, M=M_{1}^{2}, M-N=U^{2}, M+N=V^{2}$. Thus,

$$
\begin{align*}
& M_{1}^{2}-k N_{1}^{2}=U^{2}, \tag{5}\\
& M_{1}^{2}+k N_{1}^{2}=V^{2} \tag{6}
\end{align*}
$$

Since $M+N \equiv 1(\bmod 2)$, we also have $M_{1}+N_{1} \equiv 1(\bmod 2)$. But then equation (6) implies, by virtue of $k \equiv 3(\bmod 4)$, that $M_{1} \equiv 1(\bmod 2)$ and $N_{1} \equiv 0(\bmod 2)$. Moreover, $\left(M_{1}, N_{1}\right)=1$, so $\left(N_{1}, U\right)=1$ as well. By adding (5) and (6), we obtain

$$
\begin{equation*}
2 M_{1}^{2}=U^{2}+V^{2} . \tag{7}
\end{equation*}
$$

Clearly, we may assume M_{1}, U, and V to be positive (recall $M, N \neq 0$), and since (2) implies that $(U, V)=1$, it follows (see [2], p. 427, lines 4 and 5) that

$$
\begin{equation*}
M_{1}=m^{2}+n^{2}, U=m^{2}+2 m n-n^{2}, V=n^{2}+2 m n-m^{2} \tag{8}
\end{equation*}
$$

for positive integers m, n with $m+n \equiv 1(\bmod 2)$ and $(m, n)=1$. Consequently, combining (6) and (8), we have

$$
\begin{aligned}
k N_{1}^{2} & =V^{2}-M_{1}^{2}=\left(V-M_{1}\right)\left(V+M_{1}\right) \\
& =\left(2 m n-2 m^{2}\right)\left(2 n^{2}+2 m n\right)=4 m n(n-m)(n+m) ;
\end{aligned}
$$

thus,

$$
\begin{equation*}
k N_{2}^{2}=(n-m)(n+m) \cdot m \cdot n, \tag{9}
\end{equation*}
$$

where $N_{1}=2 N_{2}$. Therefore, $\left(n^{2}-m^{2}, 2 m n, m^{2}+n^{2}\right)$ is a primitive Pythagorean triple whose area equals $k N_{2}^{2}$. But $k N_{1}^{2}=V^{2}-M_{1}^{2} \leq V^{2}=M+N$. Hence, $0<n+m<M+N$; thus, an infinite descent with respect to the initial equation (1) is established.

Now suppose that $M=M_{1}^{2}, N=N_{1}^{2}, M-N=k U^{2}$, and $M+N=V^{2}$. Then

$$
\begin{gather*}
M_{1}^{2}-N_{1}^{2}=k U^{2} \tag{10}\\
M_{1}^{2}+N_{1}^{2}=V^{2} \tag{11}
\end{gather*}
$$

Adding (10) and (11), we obtain

$$
\begin{equation*}
2 M_{1}^{2}=k U_{1}^{2}+V^{2} . \tag{12}
\end{equation*}
$$

Now, since $U \equiv V \equiv 1(\bmod 2),(12)$ implies $2 M_{1}^{2} \equiv k+1(\bmod 8)$; hence, $k \equiv 2 M_{1}^{2}-1 \equiv \pm 1(\bmod$ 8). But $k \equiv 3(\bmod 8)$, so this is a contradiction.

Finally, suppose that $M=M_{1}^{2}, N=N_{1}^{2}, M-N=U^{2}$, and $M+N=k V_{1}^{2}$. This leads to a contradiction, since $M+N=M_{1}^{2}+N_{1}^{2}=k V_{1}^{2}, k \equiv 3(\bmod 4)$ and $\left(M_{1}, N_{1}\right)=1$. This concludes the proof of Case 1.

Case 2. One of $M+N, M-N, M$, or N is a times a square, one is b times a square, and the other two are squares, with $a b=k \equiv 3(\bmod 8)$ and $1<a, b<k$. Note that $a b \equiv 3(\bmod 8)$ implies that either $a \equiv 3, b \equiv 1(\bmod 8)$ or vice versa, or $a \equiv 5, b \equiv 7(\bmod 8)$ or vice versa. First, suppose that $a \equiv 1, b \equiv 3(\bmod 8)$. Since $a b=k$ with $1<a, b<k$, it follows that k belongs to Family (c) or Family (d) of the Theorem.

If k belongs to Family (c), then $k=p_{1} \cdot p_{2} \cdots \cdots p_{n}$ with $p_{1} \equiv 3(\bmod 8)$ and $p_{2} \equiv p_{3} \equiv \cdots \equiv$ $p_{n} \equiv 1(\bmod 8)$. Also, $a=q_{1} \cdot q_{2} \cdots \cdots q_{k}$ and $b=p_{1}$ or $b=p_{1} q_{k+1} q_{k+2} \cdots q_{n-1}$, where the two sets of q 's are disjoint and their union is $\left\{p_{2}, p_{3}, \ldots, p_{n}\right\}$. All the various subcases of Case 2 lead to a congruence of the form $b \cdot R^{2} \equiv e \cdot L^{2}\left(\bmod q_{1}\right)$, with $\left(b R, q_{1}\right)=1$ and where $e=1,-1,2$, or -2 ; thus, since $q_{1} \equiv 1(\bmod 8), b$ is a quadratic residue of q_{1}. On the other hand, according to the hypothesis, p_{1} is a quadratic nonresidue and $q_{k+1}, q_{k+2}, \ldots, q_{n-1}$ are all quadratic residues of q_{1}. Thus, b is a quadratic nonresidue of q_{1}, a contradiction.

If k belongs to Family (d), then $k=p_{1} \cdot p_{2} \cdots \cdots p_{n}$ with $p_{1} \equiv 5, p_{2} \equiv 7$, and $p_{3} \equiv p_{4} \equiv \cdots \equiv$ $p_{n} \equiv 1(\bmod 8)$. Thus, as above, $a=q_{1} \cdot q_{2} \cdots \cdots q_{k}$ and $b=p_{1} p_{2}$ or $b=p_{1} p_{2} q_{k+1} \cdots q_{n-2}$, where the two sets of q 's are disjoint and their union is $\left\{p_{3}, p_{4}, \ldots, p_{n}\right\}$. Again, as above, b is a quadratic residue of q_{1}. Also, according to the hypothesis, each of $q_{k+1}, q_{k+2}, \ldots, q_{n-2}$ are quadratic residues of q_{1}, and either p_{1} is a quadratic residue of q_{1} and p_{2} is a quadratic nonresidue of q_{1} or p_{1} is a quadratic nonresidue of q_{1} and p_{2} is a quadratic residue of q_{1}. In any event, we see that b must be a quadratic nonresidue of q_{1}. This contradiction completes the proof of this subcase.

Since the proofs for the remaining subcases and cases are similar to those above, we omit the details, except to note that Legendre's theorem (see [2], p. 422) is used in these proofs.

Recall that a natural number k is a congruent number if there exist natural numbers a, b, and c with $a^{2}+b^{2}=c^{2}$ and $2 a b=k$. We now have the following corollary.

Corollary: If k is an integer satisfying the hypothesis of the Theorem, then $k d^{2}$, for any positive integer d, is a non-congruent number.

Proof: Since an integer $k d^{2}$ is congruent if and only if there exist nonzero integers a, b, and c such that $a^{2}+b^{2}=c^{2}$ and $2 a b=k d^{2}$, if $k d^{2}$ were a congruent number, then we would have $(2 a)^{2}+(2 b)^{2}=(2 c)^{2}$ and $\frac{1}{2}(2 a)(2 b)=k \cdot d^{2}$, which implies that $(2 a, 2 b, 2 c)$ is a Pythagorean triangle whose area equals k times an integer square, contradicting the Theorem.

REFERENCES

1. W. Sierpinski. Elementary Theory of Numbers, p. 64. Warsaw, 1964.
2. L. E. Dickson. History of the Theory of Numbers 1I:422. Second ed. New York: Chelsea Publishing Co., 1952.
3. S. Mohanty. "Pythagorean Numbers." The Fibonacci Quarterly 28.1 (1988):31-42.

AMS Classification Numbers: 11A99, 11A25, 11D9

APPLICATIONS OF FIBONACCI NUMBERS

VOLUME 6
New Publication
Proceedings of The Sixth International Research Conference on Fibonacci Numbers and Their Applications, Washington State University, Pulliman, Washington, USA, July 18-22, 1994

Edited by G.E. Bergum, A.N. Philippou, and A.F. Horadam
This volume contains a selection of papers presented at the Sixth International Research Conference on Fibonacci Numbers and Their Applications. The topics covered include number patterns, linear recurrences, and the application of the Fibonacci Numbers to probability, statistics, differential equations, cryptography, computer science, and elementary number theory. Many of the papers included contain suggestions for other avenues of research.

For those interested in applications of number theory, statistics and probability, and numerical analysis in science and engineering:

$$
1996,560 \mathrm{pp} \text {. ISBN 0-7923-3956-8 }
$$

Hardlbound Dfl. 345.00 / $\mathbf{£ 1 5 5 . 0 0 / \text { US } \$ 2 4 0 . 0 0 ~}$
AMS members are eligible for a 25% discount on this volume providing they order directly from the publisher. However, the bill must be prepaid by credit card, registered money order, or check. A letter must also be enclosed saying: "I am a member of the American Mathematical Society and am ordering the book for personal use."

KLUWER ACADEMIC PUBLISHERS

P.O. Box 322, 3300 AH Dordrecht P.O. Box 358, Accord Station

The Netherlands
Hingham, MA 02018-0358, U.S.A.
Volumes 1-5 can also be purchased by writing to the same addresses.

[^0]: * Formerly known as Konstantine Spyropoulos.

