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In one of his famous results, Fermat showed that there exists no Pythagorean triangle with 
integer sides whose area is an integer square. His elegant method of proof is one of the first 
known examples in the history of the theory of numbers where the method of infinite descent is 
employed. Mohanty [3] has defined a Pythagorean number as the area of a Pythagorean triangle 
and studied properties of such numbers. Fermat has thus shown that no Pythagorean number can 
be an integer square. 
To extend Fermat's result, one may ask if there exists a Pythagorean triangle whose area is p times 
a perfect square, p a given prime. It turns out that, for certain primes p = 1, 5, 7 (mod 8), this is 
the case; for example, the primes p = 5,7,41 have this property. For p = 5, the triangle (34 - 1 , 

8,34 + l) has area A = 5(3-4)2. For p = 7, the triangle (44-34,2-42-32,44+34) has area 
^-7 . (3-4 .5) 2 . For p = 4l, the triangle (54-44,2-52-42,54+44) has area A = 4h(5-4-3)2. 
However, as shown below, no Pythagorean number can equal p times an integer square if p is a 
prime congruent to 3 (mod 8). 

A natural question to ask is whether there exists a number k = 3 (mod 8) and a Pythagorean 
number which equals k times a square. There is no reason to believe that such a number of k does 
not exist. Furthermore, one may attempt to find infinitely many such numbers k. 

In this paper the following result is proven. Let k be an odd squarefree positive integer with 
k = 3 (mod 8). Assume that k belongs to one of the following families: 

Family (a): k = px, where px is a prime with pl = 3 (mod 8). 
Family (b): k = pxp2, where px and/?2 are primes such that px = 5 (mod 8) and p2 = l (mod 8), 
with px being a quadratic nonresidue of p2 (so, by quadratic reciprocity, p2 is also a nonresidue 
of A). 
Family (c): k = pxp2.-.pn,n>2, where PiP2..pn are distinct primes such that px = 3 (mod 8), 
p2 = ••• = pn = 1 (mod 8); the primes p2,...,pn are all quadratic residues of each other, and they " 
are all quadratic nonresidues of px (so, by quadratic reciprocity, px is a quadratic nonresidue of 
p2,...,p„ as well). 
Family (d): k = PiP2p3-.p„, n>3, where pl9 p2, p3>'..-., p„ are distinct primes such that px = 5 
(mod 8), p2 = l (mod 8), and p3 = ••• = /?„ = 1 (mod 8), with px being a quadratic nonresidue of 
p2 (so, by quadratic reciprocity, p2 is a nonresidue of px as well) and p3,...,pn being quadratic 
residues of each other; and either with p3,...,pn being quadratic residues of px (so, by quadratic 
reciprocity, px is a quadratic residue of p3,..., pn) and with p3,...,p„ being quadratic nonresidues 
of p2 (so, by reciprocity, p2 is a quadratic nonresidue of p3,..., pn) or vice-versa. 

* Formerly known as Konstantine Spyropoulos. 
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Theorem: Let k be an odd squarefree positive integer, k = 3 (mod 8) and suppose that k belongs 
to one of the families (a)-(d) listed above. Then there is no Pythagorean triangle whose area 
equals k times an integer square. 

Proof: Let (A, B, C) be a Pythagorean triple whose area is k times a square, y AB = kD2. 
One easily sees that we may assume (A, B) = 1, for if it were otherwise, the problem would 
reduce to the case of a Pythagorean triple (Ah Bl, Q) with (Ah B{) = 1 and \ A^ - kD2. By 
assuming that (A, B, C) is a primitive Pythagorean triple, we may set A = M2 - N2, B = 2MN, 
C = M2 + N2, for positive integers M, N with (M, N) = 1 and M + N = 1 (mod 2). Thus, from 
\ AB = A£)2, one obtains 

(M - N)(M + # ) M # = kD2. (1) 

Since (M, JV) = 1 andM + N = 1 (mod 2), we have 
(M, # ) = (M,M + N) = (M, M - # ) = (# , M - JV) 

= (N,M + N) = (M- N,M + N) = 1. ^ 

Thus, all the factors M-N,M + N,M, and TV on the left-hand side of (1) are pairwise relatively 
prime. Therefore, since k is squarefree, there are precisely four cases or possibilities and their 
ramifications. 

The first possibility is that precisely one of the factors on the left-hand side of (1) is equal to k 
times a square, while the rest of them are perfect squares. 

The second possibility is that one of M + N,M-N,M, or N equals a times a square, 
another of the factors equals b times a square, and the other two factors are integer squares with 
ab-k and \<a,b <k. 

The third possibility is that one of the factors equals a times a square, another equals b times 
a square, a third equals c times a square, and the fourth is just an integer square with abc = k and 
1 < a, ft, c<k. 

The fourth possibility is that M = aM2, N = bN2, M + N = cU2, M-N = dV2, with 
abed = k and l<a,b,c,d<k. 

Case 1, Exactly one of M + N, M - N, M, or N equals k times an integer square, while the 
remaining three are integer squares. 

First, suppose M = kM2, N = N2, M - N = U2, M + N = V2. Consequently, we obtain 

kM2-N2 = U2, (3) 
kM2+N2=V2. (4) 

Thus, 2kM2 = U2 +V2 and (U, V) - 1 by (2). However, the last equation constitutes a contradic-
tion, since k = 3 (mod 4), and it is well known that no prime congruent to 3 (mod 4) divides the 
sum of two relatively prime integer squares. 

Next, suppose that N = kN2, M = M2, M- N = C/2, M + N = V2. Thus, 

M2-kN2 = U2, (5) 
M2+kN2=V2. (6) 
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Since M + N = 1 (mod 2), we also have •Ml + Nl = 1 (mod 2). But then equation (6) implies, by 
virtue of k = 3 (mod 4), that Ml = l (mod 2) and Nx = 0 (mod 2). Moreover, (M1? JVj) = 1, so 
(Nly U) = 1 as well. By adding (5) and (6), we obtain 

2M2=U2+V2. (7) 

Clearly, we may assume M1? U, and Fto be positive (recall M,N & 0), and since (2) implies that 
'(£/, V) = l, it follows (see [2], p. 427, lines 4 and 5) that 

Ml=m2 +n2, U = m2 +2mn-n2, V-r? + 2mn-m2 (8) 

for positive integers m, n with m + n = l (mod 2) and (m, n) - 1. Consequently, combining (6) and 
(8), we have 

JW1
2==F2-A/?=(F-M1)(F + A/1) 
= (2m?? - 2m2)(2n2 + 2/?w) = 4mn(n - m)(n + m); 

thus, 
fcN2 = (n-m)(n + m)'m'n, (9) 

where JVj = 2N2 • Therefore, (n2 - rn2,2nm, m2 +n2) is a primitive Pythagorean triple whose area 
equals kN2. But kN2 - V2-M2 <V2 = M + N. Hence, 0<n + m<M + N; thus, an infinite 
descent with respect to the initial equation (1) is established. 

Now suppose that M = M2,N = N2, M~N = kU2, and M + N = V2. Then 

M2-N2 = kU2, (10) 
M2+N2=V2. (11) 

Adding (10) and (11), we obtain 

2M2 = kU2+V2. (12) 

Now, since U = V = l (mod 2), (12) implies 2M2 = k + l (mod 8); hence, k = 2M2 - 1 = ±1 (mod 
.8). But k HE 3 (mod 8), so this is a contradiction. 

Finally, suppose that M = M2, N = # 2 , M - JV = £/2, and M 4- JV = ^ 2 . This leads to a 
contradiction, since M + N = M2 + N2 = kV2, k = 3 (mod 4) and (M1? Nx) = l. This concludes 
the proof of Case 1. 

Case 2. One of M + N, M - N, M, or N is a times a square, one is b times a square, and the 
other two are squares, with ah-k = 3 (mod 8) and 1 < a, b < k. Note that ab = 3 (mod 8) implies 
that either a = 3, b = 1 (mod 8) or vice versa, or a = 5, * = 7 (mod 8) or vice versa. First, suppose 
that a = 1, b = 3 (mod 8). Since ab-k with l<a,b<k,it follows that £ belongs to Family (c) or 
Family (d) of the Theorem. 

If k belongs to Family (c), then k-Pi'P2""'Pn
 w^h Pi = ^ (m°d 8) and p2 = p3 = • • • = 

p„ = l (mod 8). Also, a-ql-q2 qk and b = p{or h = A%+i%+2 • • • #«-i> where the two sets of 
g's are disjoint and their union is {p2,p3, ...,#,}• All the various subcases of Case 2 lead to a 
congruence of the form b-R2 = e-L2 (modqx), with (Ai?, ^ ) = 1 and where e = 1, -1,2, or - 2 ; 
thus, since qx = 1 (mod 8), .A is a quadratic residue of qx. On the other hand, according to the 
hypothesis, px is a quadratic nonresidue and qk+l, qk+2, •••?cln-i a r e a^ quadratic residues of ^ . 
Thus, b is a quadratic nonresidue of ql9 a contradiction. 
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If k belongs to Family (d), then k = pl-p2 °°*°°Pn with• px = 5, p2 = 1, and p3 = p4 = ••• = 
P „ 5 1 (mod 8). Thus, as above, a = g|'f2 % and b = ptp2 orb = pxp2qk+l... q„_2, where the 
two sets of ^5s are disjoint and their union is {p3,p4> ...,/?„}. Again, as above, & is a quadratic 
residue of qv Also5 according to the hypothesis, each of qk+l9 qk+2,..., fw_2 are quadratic residues 
of qi9 and either px is a quadratic residue of qt and p2 is a quadratic nonresidue of qx or /^ is a 
quadratic nonresidue of ^ and p2 is a quadratic residue of qv In any event, we see that b must 
be a quadratic nonresidue of qv This contradiction completes the proof of this subcase. 

Since the proofs for the remaining subcases and cases are similar to those above, we omit the 
details, except to note that Legendre's theorem (see [2], p. 422) is used in these proofs. 

Recall that a natural number k is a congruent number if there exist natural numbers a, b, and c 
with a2 -\-b2 = c2 and 2ab = k. We now have the following corollary. 

Corollary: If k is an integer satisfying the hypothesis of the Theorem, then kd2, for any positive 
integer d, is a non-congruent number. 

Proof: Since an integer kd2 is congruent if and only if there exist nonzero integers a, b, and 
c such that a2 +b2 = c2 and lab = kd2, if kd2 were a congruent number, then we would have 
(2a)2 + (2ft)2 = (2c)2 and ^-(2a)(2i) = k°d2

y which implies that (2a, 2J, 2c) is a Pythagorean tri-
angle whose area equals k times an integer square, contradicting the Theorem. 
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