SOME PROPERTIES OF THE GENERALIZED FIBONACCI
 SEQUENCES $C_{n}=C_{n-1}+C_{n-2}+r$

Zhizheng Zhang
Department of Mathematics, Luoyang Teachers' College, Luoyang, Henan, 471022, P. R. China
(Submitted December 1995)
The generalized Fibonacci sequences $\left\{C_{n}(a, b, r)\right\}$ defined by $C_{n}(a, b, r)=C_{n-1}(a, b, r)+$ $C_{n-2}(a, b, r)+r$ with $C_{1}(a, b, r)=a, C_{2}(a, b, r)=b$, where r is a constant, have been studied in [2] and [3]. Again we take the initial value $C_{0}(a, b, r)=b-a-r$. The Fibonacci sequence arises as a special case, $F_{n}=C_{n}(1,1,0)$, while the Lucas sequence is $L_{n}=C_{n}(1,3,0)$.

The purpose of this note is to establish some properties of $C_{n}(a, b, r)$ by using the method of L. C. Hsu [1].

For the convenience of the reader, we introduce the following symbols:
I will be the identity operator;
E represents the shift operator;
E_{i} is the " $i^{\text {th }}$ coordinate" shift operator ($i=1,2$);
$\nabla=I+E_{2}-E_{1}$.
We also let $\binom{n}{i, j}=\frac{n!}{i!j!(n-i-j)!}$.
In [1], Hsu and Maosen gave the following proposition.
Proposition 1: Let $f(n, k)$ and $g(n, k)$ be any two sequences. Then the following reciprocal formulas hold:

$$
\begin{align*}
& g(n, k)=\nabla^{n} f(0, k)=\sum_{i+j+s=n}\binom{n}{i, j}(-1)^{i} f(i, k+j), \tag{1}\\
& f(n, k)=\nabla^{n} g(0, k)=\sum_{i+j+s=n}\binom{n}{i, j}(-1)^{i} g(i, k+j) . \tag{2}
\end{align*}
$$

From this point on, we briefly write C_{n} for $C_{n}(a, b, r)$.
Lemma 1: $C_{k}+C_{k+1}+C_{k+6}=3 C_{k+4}$.
Proof:

$$
\begin{align*}
C_{k}+C_{k+1}+C_{k+6} & =C_{k}+C_{k+1}+C_{k+5}+C_{k+4}+r \tag{3}\\
& =C_{k+2}-r+C_{k+4}+C_{k+3}+r+C_{k+4}+r \\
& =C_{k+4}-r+C_{k+4}+r+C_{k+4}=3 C_{k+4} .
\end{align*}
$$

Theorem 1: $C_{4 n+6 k}=\sum_{i+j+s=n}\binom{n}{i, j} 3^{-n} C_{i+6(j+k)}$,

$$
\begin{equation*}
\left.C_{n+6 k}=\sum_{i+j+s=n}\binom{n}{i, j}(-1)^{n+i} 3^{i} C_{4 i+6(j+k)} .\right\} \tag{4}
\end{equation*}
$$

Proof: We take $f(i, j)=(-1)^{i} C_{i+6 j}$. Using Lemma 1,

$$
\begin{aligned}
\nabla f(i, j) & =\left(I+E_{2}-E_{1}\right) f(i, j)=f(i, j)+f(i, j+1)-f(i+1, j) \\
& =(-1)^{i} C_{i+6 j}+(-1)^{i} C_{i+6(j+1)}-(-1)^{i+1} C_{i+1+6 j} \\
& =(-1)^{i}\left(C_{i+6 j}+C_{i+6 j+1}+C_{i+6 j+6}\right)=(-1)^{i} 3 C_{i+6 j+4}
\end{aligned}
$$

Hence, $\nabla \equiv 3 E_{1}^{4}$. Thus, we obtain $g(n, k)=\nabla^{n} f(0, k)=3^{n} E_{i}^{4 n} f(0, k)=3^{n} C_{4 n+6 k}$. By (1), we have

$$
3^{n} C_{4 n+6 k}=\sum_{i+j+s=n}\binom{n}{i, j} C_{i+6(j+k)}
$$

and, by (2), we get

$$
(-1)^{n} C_{n+6 k}=\sum_{i+j+s=n}\binom{n}{i, j}(-1)^{i} 3^{i} C_{4 i+6(j+k)}
$$

completing the proof of Theorem 1.
We take $k=0$ in Theorem 1 to Write Corollary 1.1 , and $i=0$ in Corollary 1.1 to derive Corollary 1.2 .
Corollary 1.1: $\left.\begin{array}{rl}C_{4 n} & =\sum_{i+j+s=n}\binom{n}{i, j} 3^{-n} C_{i+6 j}, \\ C_{n} & =\sum_{i+j+s=n}\binom{n}{i, j}(-1)^{n+i} 3^{i} C_{4 i+6 j} .\end{array}\right\}$
Corollary 1.2: $C_{n}-(-1)^{n} \sum_{j=0}^{n}\binom{n}{j} C_{6 j} \equiv 0(\bmod 3)$.
We can obtain Theorem 2, in a manner similar to that used to prove Theorem 1, by taking $f(i, j)=(-1)^{i} C_{6 i+j}$ and expanding $\nabla f(i, j)$. Again, set $k=0$ in Theorem 2 to write Corollary 2.1, and let $i=0$ in (12) below to obtain Corollary 2.2.

Theorem 2: $C_{4 n+k}=\sum_{i+j+s=n}\binom{n}{i, j} 3^{-n} C_{6 i+j+k}$,

$$
\begin{equation*}
C_{6 n+k}=\sum_{i+j+s=n}\binom{n}{i, j}(-1)^{n+i} 3^{i} C_{4 i+j+k} \tag{9}
\end{equation*}
$$

Corollary 2.1: $C_{4 n}=\sum_{i+j+s=n}\binom{n}{i, j} 3^{-n} C_{6 i+j}$

$$
\begin{equation*}
\left.C_{6 n}=\sum_{i+j+s=n}\binom{n}{i, j}(-1)^{n+i} 3^{i} C_{4 i+j}\right\} \tag{11}
\end{equation*}
$$

Corollary 2.2: $C_{6 n}-(-1)^{n} \sum_{j=0}^{n}\binom{n}{j} C_{j} \equiv 0(\bmod 3)$.
Proposition 2: If a sequence $\left\{X_{n}\right\}$ satisfies

$$
\begin{equation*}
I=2 E^{-1}-E^{-3} \tag{14}
\end{equation*}
$$

then

$$
\begin{equation*}
I=\sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i} 2^{i} E^{-3 n+2 i} ; \tag{15}
\end{equation*}
$$

hence,

$$
\begin{equation*}
X_{3 n}=\sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i} 2^{i} X_{2 i}, \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{3 n+k}=\sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i} 2^{i} X_{2 i+k} \tag{17}
\end{equation*}
$$

Proof: Use binomial expansions.
Lemma 2: $C_{n}=2 C_{n-1}-C_{n-3}$.
Proof:

$$
\begin{align*}
C_{n} & =C_{n-1}+C_{n-2}+r \tag{18}\\
& =C_{n-1}+C_{n-1}-C_{n-3}-r+r \\
& =2 C_{n-1}-C_{n-3} .
\end{align*}
$$

Theorem 3: $C_{3 n}=\sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i} 2^{i} C_{2 i}$,

$$
\begin{equation*}
\left.C_{3 n+k}=\sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i} 2^{i} C_{2 i+k} .\right\} \tag{19}
\end{equation*}
$$

Proof: Since C_{n} satisfies (14), Theorem 3 is proved by Proposition 2.
Our final corollary follows by setting $i=0$ in (20).
Corollary 3.1: $C_{3 n+k}-(-1)^{n} C_{k} \equiv 0(\bmod 2)$.

ACKNOWLEDGMENT

The author wishes to thank the anonymous referees for their patience and suggestions which led to a substantial improvement of this paper.

REFERENCES

1. L. C. Hsu \& Jiang Maosen. "A Kind of Invertible Graphical Process for Finding Reciprocal Formulas with Applications." Acta Scientiarum Naturalium Universitatis Jilinensis 4 (1980): 43-55.
2. M. Bicknell-Johnson \& G. E. Bergum. "The Generalized Fibonacci Numbers $\left\{C_{n}\right\}, C_{n}=$ $C_{n-1}+C_{n-2}+k$." In Applications of Fibonacci Numbers 2:193-205. Ed. A. N. Philippou, A. F. Horadam, \& G. E. Bergum. Dordrecht: Kluwer, 1988.
3. M. Bicknell-Johnson. "Divisibility Properties of the Fibonacci Numbers Minus One, Generalized to $C_{n}=C_{n-1}+C_{n-2}+k$." The Fibonacci Quarterly 28.2 (1990):107-12.
4. Zhang Zhizheng \& Kung Qingxin. "Some Properties of Sequences $\{V(n)=V(n-1)+V(n-2)$ $+1\}$." Natural Science Journal of Qinghai Normal University (Chinese) 38.4 (1995):7-12.
AMS Classification Numbers: 11B37, 11B39
