DIRECTED GRAPHS DEFINED BY ARITHMETIC (MOD n)

Ezra Brown
Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123

(Submitted February 1990)

1. INTRODUCTION

Let a and $n>0$ be integers, and define $G(a, n)$ to be the directed graph with vertex set $V=\{0,1, \ldots, n-1\}$ such that there is an arc from x to y if and only if $y \equiv a x(\bmod n)$. Recently, Ehrlich [1] studied these graphs in the special case $a=2$ and n odd. He proved that if n is odd, then the number of cycles in $G(2, n)$ is odd or even according as 2 is or is not a quadratic residue $\bmod n$. The aim of this paper is to give the analogous results for all a and all positive n. In particular, we show that if a and n are relatively prime, and n is odd, then the number of cycles in $G(a, n)$ is odd or even according as a is or is not a quadratic residue $\bmod n$.

Define $G P(a, n)$ to be the directed graph with vertex set $V=\{0,1, \ldots, n-1\}$ such that there is an arc from x to y if and only if $y \equiv x^{a}(\bmod n)$. We determine the number of cycles in $G P(a, n)$ for n a prime power.

2. PRELIMINARY RESULTS

We require a few lemmas. In what follows, write $d \mid n$ to mean that d is a divisor of n and let (x, y) and $[x, y]$ denote the greatest common divisor (GCD) and least common multiple (LCM), respectively, of x and y. If $(a, m)=1$, then (a / m) denotes the familiar Legendre-Jacobi quadratic residue symbol. Finally, let $U_{n}=\{x: 1 \leq x \leq n$ and $(x, n)=1\}$, let $\varphi(n)$ denote the Euler phi-function, and, if $(a, n)=1$, let $\operatorname{ord}_{n}(a)$ be the least positive integer r such that $a^{r} \equiv 1(\bmod n)$.

Lemma 1: Let $(a, n)=1$. If $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ is a cycle in $G(a, n)$, then $\left(n, x_{i}\right)$ is the same for each $i, 1 \leq i \leq r$.

Proof: Let $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ be a cycle in $G(a, n)$. Since $(a, n)=1$, it follows that $\left(n, x_{2}\right)=$ $\left(n, a x_{1}\right)=\left(n, x_{1}\right)$; thus, for each $i,\left(n, x_{i}\right)=\left(n, x_{1}\right)$ by induction. [We shall call this common value of $\left(n, x_{i}\right)$ the GCD of the cycle $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$.]

For arbitrary a and n, let $C(a, n)$ denote the number of cycles in $G(a, n)$, and let $c(a, n, d)$ be the number of cycles in $G(a, n)$ with GCD d.

Lemma 2: Let $(a, n)=1$. Then $c(a, n, 1)=\frac{\varphi(n)}{\operatorname{ord}_{n}(a)}$.
For example, let $a=3$ and $n=65$. Then $\varphi(65)=48, \operatorname{ord}_{5}(3)=4$, and $\operatorname{ord}_{13}(3)=3$; hence, $\operatorname{ord}_{65}(3)=12$. Thus, $c(3,65,1)=48 / 12=4$, and the four relevant cycles are

$$
\begin{aligned}
& (1,3,9,27,16,48,14,42,61,53,29,22) \\
& (2,6,18,54,32,31,28,19,57,41,58,44) \\
& (4,12,36,43,64,62,56,38,49,17,51,23) \text {, and } \\
& (7,21,63,59,47,11,33,34,37,46,8,24)
\end{aligned}
$$

Proof: Let $r=\operatorname{ord}_{n}(a)$. Then the elements of the cycle ($1, a, \ldots, a^{r-1}$) form a subgroup $\langle a\rangle$ of U_{n} of order r. The claim is that the cosets of $\langle a\rangle$ in U_{n} and the cycles in $G(a, n)$ with GCD 1 are in one-to-one correspondence. For, writing $x \sim y$ to mean that x and y are in the same coset of $\langle a\rangle$ in U_{n}, we see that $x \sim y$ if and only if $x^{-1} y \equiv a^{i}(\bmod n)$ for some integer i. But this is precisely the condition that x and y lie on a cycle in $G(a, n)$. Hence, $c(a, n, 1)$ is equal to the number of cosets of $\langle a\rangle$ in U_{n}, i.e., the index of $\langle a\rangle$ in U_{n}. But since the group U_{n} has order $\varphi(n)$, this index is just $\frac{\varphi(n)}{\operatorname{ord}_{n}(a)}$.

Lemma 3: If $(a, n)=1$ and $d \mid n$, then $c(a, n, d)=c\left(a, \frac{n}{d}, 1\right)$.
For example, the cycles in $G(2,45)$ with GCD 3 are $(3,6,12,24)$ and $(21,42,39,33)$; the corresponding cycles in $G(2,15)$ with GCD 1 are $(1,2,4,8)$ and $(7,14,13,11)$.

Proof: Let $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ be a cycle in $G(a, n)$ with GCD d. Then $x_{2} \equiv a x_{1}, \ldots, x_{r} \equiv a^{r-1} x_{1}$ and $x_{1} \equiv a^{r} x_{1}(\bmod n)$ with r positive and minimal. This is true if and only if $\left(1, a, \ldots, a^{r-1}\right)$ is a cycle in $G\left(a, \frac{n}{\left(n, x_{1}\right)}\right)=G\left(a, \frac{n}{d}\right)$ (clearly with GCD 1). Hence, each cycle $G(a, n)$ with GCD d has length $r=\operatorname{ord}_{n / d}(a)$. Furthermore, x and y lie on a cycle in $G(a, n)$ with GCD d if and only if $y \equiv x a^{i}(\bmod n)$, i.e., $\frac{y}{d} \equiv \frac{x}{d} a^{i}\left(\bmod \frac{n}{d}\right)$-which is precisely the condition that $\frac{x}{d}$ and $\frac{y}{d}$ lie on a cycle in $G\left(a, \frac{n}{d}\right)$. Thus, the number of cycles in $G(a, n)$ with $\operatorname{GCD} d$ is the same as the number of cycles in $G\left(a, \frac{n}{d}\right)$ with GCD 1. That is, $c(a, n, d)=c\left(a, \frac{n}{d}, 1\right)$.

We are now ready for the main result of this section.
Theorem A : If $(a, n)=1$, then

$$
C(a, n)=\sum_{d \mid n} \frac{\varphi(d)}{\operatorname{ord}_{d}(a)} .
$$

Thus,

$$
\begin{aligned}
C(5,77) & =\frac{\varphi(1)}{\operatorname{ord}_{1}(5)}+\frac{\varphi(7)}{\operatorname{ord}_{7}(5)}+\frac{\varphi(11)}{\operatorname{ord}_{11}(5)}+\frac{\varphi(77)}{\operatorname{ord}_{77}(5)} \\
& =\frac{1}{1}+\frac{6}{6}+\frac{10}{5}+\frac{60}{30} \\
& =1+1+2+2=6 .
\end{aligned}
$$

Proof: We have

$$
\begin{aligned}
C(a, n) & =\sum_{d \mid n} c(a, n, d) \\
& =\sum_{d \mid n} c\left(a, \frac{n}{d}, 1\right) \quad \text { (by Lemma 3) } \\
& =\sum_{d \mid n} c(a, d, 1) \quad \text { (by reordering the sum) } \\
& =\sum_{d \mid n} \frac{\varphi(d)}{\operatorname{ord}_{d}(a)} \quad \text { (by Lemma 2). }
\end{aligned}
$$

DIRECTED GRAPHS DEFINED BY ARITHMETIC (MOD n)

3. THE PARITY OF $C(a, n)$ FOR $(a, n)=1$

Next, we determine the parity of the number of cycles in $G(a, n)$ with GCD 1 ; from that, we determine the parity of $C(a, n)$ for $(a, n)=1$.

Lemma 4: Let p be an odd prime, let r be a positive integer, and let $(a, p)=1$. Put $p-1=2^{s} q$, where q is odd. (a) If $(a / p)=1$, then $\operatorname{ord}_{p^{r}}(a) \mid 2^{s-1} q p^{r-1}$. (b) If $(a / p)=-1$, then $2^{s} \mid \operatorname{ord}_{p^{r}}(a)$.

Proof: Euler's criterion for the Legendre symbol states that $(a / p) \equiv a^{(p-1) / 2}(\bmod p)$. Thus, if $p-1=2^{s} q$, where q is odd, then $(a / p) \equiv a^{2^{s-1} q}(\bmod p)$. We have two cases:
(a) If $(a / p)=1$, then $\dot{a}^{s^{-1}} q \equiv 1(\bmod p)$, so that $\operatorname{ord}_{p}(a) \mid 2^{s-1} q$. If the statement is true for some $r \geq 1$, then $a^{2 s-1} q p^{r-1}=1+k p^{r}$. Raising both sides to the $p^{\text {th }}$ power, we have $a^{2^{s-1} q p^{r}}=$ $\left(1+k p^{r}\right)^{p} \equiv 1\left(\bmod p^{r+1}\right)$. Hence, $\operatorname{ord}_{p^{r}}(a) \mid 2^{s-1} q p^{r-1}$ by induction.
(b) If $(a / p)=-1$, then $a^{2-1} q \equiv-1(\bmod p)$, so that $2^{s} \mid \operatorname{ord}_{p}(a)$. Since $\operatorname{ord}_{p}(a)$ is a divisor of $\operatorname{ord}_{p^{r}}(a)$ for $r \geq 1$, we are done.

Lemma 5: Let $(a, n)=1$ with n odd. If $n=p^{r}$, where p is a prime and if $(a / p)=-1$, then $c(a, n, 1)$ is odd; in all other cases, $c(a, n, 1)$ is even.

Proof: Let $p-1=2^{s} q$, where q is odd. By Lemma 4, if $(a / p)=-1$, then $\operatorname{ord}_{p^{r}}(a)=2^{s} k$ with k odd. Since $\varphi\left(p^{r}\right)=p^{r-1}(p-1)=p^{r-1} 2^{s} q$, it follows from Lemma 2 that

$$
c\left(a, p^{r}, 1\right)=\frac{\varphi\left(p^{r}\right)}{\operatorname{ord}_{p^{r}}(a)}=\frac{p^{r-1} q}{k},
$$

which is an odd number. Hence, $c\left(a, p^{r}, 1\right)$ is odd.
We must now show that $c(a, n, 1)$ is even in all other cases.
First, if $n=p^{r}$ with p as above, and if $(a / p)=1$, then the highest power of 2 dividing $\operatorname{ord}_{p^{r}}(a)$ is 2^{s-1}. Since $2^{s} \mid \varphi\left(p^{r}\right)$, it follows that the fraction $\frac{\varphi(p)}{\operatorname{ord}_{p^{r}(a)}}$ is even.

Next, if $n=\prod_{i=1}^{g} p_{i}^{e_{i}}$ with $g>1$ and $p_{i}-1=2^{s_{i}} q_{i}$, then

$$
\operatorname{ord}_{n}(a) \mid\left[p_{1}^{e_{1}-1} \cdot 2^{s_{1}} q_{1}, \ldots, p_{g}^{e_{g}-1} \cdot 2^{s_{g}} q_{g}\right]=\prod_{i=1}^{g} p_{i}^{e_{i}-1}\left[q_{1}, \ldots, q_{g}\right] \cdot 2^{M}
$$

where $M=\max \left(s_{1}, \ldots, s_{g}\right)$. Now let $S=\sum_{i=1}^{g} s_{i}$. Since n is divisible by at least two distinct odd primes, it follows that $S>M$, so that $c(a, n, 1)=\frac{\varphi(n)}{\operatorname{ord}_{n}(a)}$ is divisible by 2^{S-M}. Hence, $c(a, n, 1)$ is even.

A slight modification of the above proof yields the following lemma.
Lemma 6: Let $(a, n)=1$ with n even.
(a) If n is divisible either by 8 or by more than one odd prime, or if $n=4 p^{e}$ with p an odd prime, then $c(a, n, 1)$ is even.
(b) If p is an odd prime, then $c\left(a, p^{e}, 1\right)=c\left(a, 2 p^{e}, 1\right)$.
(c) $c(a, 1,1)=c(a, 2,1)=1$ and $c(a, 4,1)=\frac{(-1 / a)+3}{2}$.

We may now prove our main results.
Theorem \mathbb{B} : Let a and n be relatively prime, and let n be odd. Then the number of cycles in $G(a, n)$ is odd or even according as a is or is not a quadratic residue $\bmod n$. That is $C(a, n) \equiv$ $\frac{1+(a / n)}{2}(\bmod 2)$.

For example, $C(3,1001)$ is even because $(3 / 1001)=(1001 / 3)=(2 / 3)=-1$. A bit of direct calculation reveals that $\operatorname{ord}_{7}(3)=6, \operatorname{ord}_{11}(3)=5$, and $\operatorname{ord}_{13}(3)=3$, so that

$$
\begin{aligned}
C(3,1001) & =\sum_{d \mid 1001} \frac{\varphi(d)}{\operatorname{ord}_{d}(a)} \\
& =1+\frac{6}{6}+\frac{10}{5}+\frac{12}{3}+\frac{60}{30}+\frac{72}{6}+\frac{120}{15}+\frac{720}{30}=1+1+2+4+2+12+8+24=54,
\end{aligned}
$$

which is indeed even. Somewhat more tricky is the evaluation of $C(2159, p q)$, where both $p=2059094018064827312345603$ and $q=534286141271831814831333517$ are primes. But, since $p q \equiv 3(\bmod 4)$, we see that $(2159 / p q)=-(p q / 2159)=-(743 / 2159)=(2159 / 743)$, which reduces to the product $(2 / 673)(8 / 35)$, or -1 . Hence, $C(2159, p q)$ is even.

Proof: Let $n=\prod_{i=1}^{g} p_{i}^{e_{i}}$ with each p_{i} odd, and suppose $(a, n)=1$. It follows from Theorem A and Lemma 5 that

$$
C(a, n)=\sum_{d \mid n} \frac{\varphi(d)}{\operatorname{ord}_{d}(a)} \equiv 1+\sum_{i=1}^{g} \sum_{j=1}^{e_{i}} \frac{\varphi\left(p_{i}^{j}\right)}{\operatorname{ord}_{p_{i}^{j}}(a)}(\bmod 2),
$$

since all other terms are even. If we order the primes p_{i} so that for some integer f (which might be 0$),\left(a / p_{i}\right)=1$ if and only if $i>f$, then we see that

$$
C(a, n) \equiv 1+\sum_{i \leq f} \sum_{j=1}^{e_{i}} 1(\bmod 2) \equiv 1+\sum_{i \leq f} e_{i}(\bmod 2) .
$$

On the other hand, since n is odd and $(a, n)=1$, we use the well-known properties of the Legendre and Jacobi symbols to see that

$$
\begin{aligned}
(a / n) & =\prod_{i=1}^{g}\left(a / p_{i}\right)^{e_{i}}=\prod_{i \leq f}(-1)^{e_{i}} \quad\left[\text { since }\left(a / p_{i}\right)=1 \text { for } i>f\right] \\
& =(-1)^{\Sigma_{i s f} e_{i}}, \quad \text { so that } \\
(-1)^{C(a, n)} & \equiv(-1)^{1+\Sigma_{i s f} e_{i}} \equiv-(a / n)(\bmod 2) .
\end{aligned}
$$

Hence, $C(a, n)$ is odd if $(a / n)=1$, and $C(a, n)$ is even if $(a / n)=-1$, and we are done.
Theorem C : Let a and n be relatively prime, let n be even, and write $n=2^{e} n^{\prime}$, where n^{\prime} is odd.
(a) If $e=1$, then $G(a, n)$ has an even number of cycles.
(b) If $e \geq 2$, then the number of cycles in $G(a, n)$ is even or odd according as -1 is or is not a quadratic residue $\bmod n^{\prime}$. That is,

$$
C(a, n) \equiv \frac{1-\left(-1 / n^{\prime}\right)}{2}(\bmod 2) .
$$

DIRECTED GRAPHS DEFINED BY ARITHMETIC (MOD n)

Proof: Theorem C follows from Theorem A and Lemma 6 in the same way that Theorem B follows from Theorem A and Lemma 5.

4. THE PARITY OF $\boldsymbol{C}(\boldsymbol{a}, \boldsymbol{n})$ FOR ARBITRARY a AND \boldsymbol{n}

We are now ready to extend Theorems B and C to the graphs $G(a, n)$, where a and n are not relatively prime. The principal observation is the correspondence between the cycles in $G(a, q m)$ and the cycles in $G(a, m)$. Specifically, we have the following lemma.

Lemma 7: Suppose that $(m, a)=1$ and that each prime divisor of q divides a. Then $C(a, q m)=$ $C(a, m)$.

Proof: Let x be an integer mod $q m$. We may write $x=\left(x_{a}, y\right)$, where $(y, a)=1$ and each prime divisor of x_{a} divides a. Thus, $\left(x_{a}, q\right)=1$. Now let $i \geq 0$ and $r>0$ be minimal and satisfy $a^{i+r} x \equiv a^{i} x(\bmod q m)$. This happens if and only if $y\left(a^{r}-1\right)\left(a^{i} x_{a}\right) \equiv 0(\bmod q m)$. But $\left(a^{i} x_{a}, q\right)=1$ and $\left(y\left(a^{r}-1\right), m\right)=1$. Hence, the above congruence holds if and only if $q \mid y\left(a^{r}-1\right)$ and $m \mid a^{i} x_{a}$. Thus, $\left(a^{i} x, \ldots, a^{i+r-1} x\right)$ is a cycle in $G(a, q m)$ if and only if i is the least nonnegative integer such that $m \mid a^{i} x$ and $\left(y, a y, \ldots, a^{r-1} y\right)$ is a cycle in $G(a, q)$, where y is the largest divisor of x relatively prime to m. But this means that the cycles of $G(a, q m)$ and the cycles of $G(a, q)$ are in one-toone correspondence, i.e., $C(a, q m)=C(a, m)$.

As a direct consequence of Lemma 7, we have the following result.
Theorem D: If a and n are positive integers, then the parity of $C(a, n)$ is equal to the parity of $C\left(a, n^{\prime}\right)$, where n^{\prime} is the largest divisor of n that is relatively prime to a.

5. THE CYCLE STRUCTURE OF THE GRAPHS GP($a, n)$ FOR n A PRIME

Let $G P(a, n)$ be the directed graph with vertex set $V=\{0,1, \ldots, n-1\}$ such that there is an arc from x to y if and only if $y \equiv x^{a}(\bmod n)$. Let $C P(a, n)$ denote the number of cycles in the graph $G P(a, n)$.

There are some interesting differences between the graphs $G P(a, n)$ and $G(a, n)$. For example, if $(a, n)=1$, then every vertex of $G(a, n)$ lies on a cycle. This is not the case for the vertices of $G P(a, n)$. If p^{n} is a prime power, then $G P\left(a, p^{n}\right)$ looks like a union of charm bracelets, with each charm a tree that corresponds to a coset of a certain subgroup U of roots of unity mod p^{n}. In particular, if we write $\varphi\left(p^{n}\right)=q r$, where $(q, a)=1$, every prime divisor of r divides a, and m is the least positive integer such that $r \mid a^{m}$, then U consists of the a^{m} th roots of unity mod $\varphi\left(p^{n}\right)$.

Our principal result of this section is the following theorem.
Theorem P: If p^{n} is an odd prime, then there is a one-to-one correspondence between the cycles of $G P\left(a, p^{n}\right)$ and the cycles of $G(a, q)$, where q is the largest divisor of $\varphi\left(p^{n}\right)$ that is relatively prime to a. Furthermore,

$$
C P\left(a, p^{n}\right)=1+\sum_{d \mid \varphi\left(p^{n}\right),(d, a)=1} \frac{\varphi(d)}{\operatorname{ord}_{d}(a)}
$$

The following lemma leads us to the proof of Theorem P.
Lemmal 8: Let p^{n} be a prime power, let g be a primitive root $(\bmod p)$, let $(a, p)=1$, and write $\varphi\left(p^{n}\right)=q r$, where $(q, a)=1$ and every prime divisor of r divides a. Then x and y lie on a cycle in $G P\left(a, p^{n}\right)$ if and only if either (a) there exist integers j and k such that $x \equiv g^{r j}\left(\bmod p^{n}\right), y \equiv g^{r k}$ $(\bmod p)$, and j and k lie on a cycle of $G(a, q)$, or $(b) x=y=0$.

Proof: If $p \mid x$, then for some positive integer $s, x^{a^{s}} \equiv 0\left(\bmod p^{n}\right)$. Thus, if $p \mid x$, then x lies on a cycle in $G P\left(a, p^{n}\right)$ if and only if $x \equiv 0\left(\bmod p^{n}\right)$. From here on, we assume that x and y are relatively prime to p.

If x is a vertex of $G P\left(a, p^{n}\right)$, then we may write $x \equiv g^{t}\left(\bmod p^{n}\right)$ for some integer t with $0 \leq t<\varphi\left(p^{n}\right)$. Let us first show that x lies on a cycle of $G P\left(a, p^{n}\right)$ if and only if $r \mid t$. We have the following sequence of equivalent statements:

$$
x \text { lies on a cycle of } G P\left(a, p^{n}\right)
$$

$$
\begin{array}{ll}
\text { if and only if } & x^{a^{s}} \equiv x\left(\bmod p^{n}\right) \text { for some positive integer } s \\
\text { if and only if } & g^{t\left(a^{s}-1\right)} \equiv 1\left(\bmod p^{n}\right) \text { for some positive integer } s, \\
\text { if and only if } & \varphi\left(p^{n}\right) \mid t\left(a^{s}-1\right)
\end{array}
$$

Hence, if x lies on a cycle of $G P\left(a, p^{n}\right)$, then $r q \mid t\left(a^{s}-1\right)$. Now each prime divisor of r divides a, so it follows that $\left(r, a^{s}-1\right)=1$. We conclude that $r \mid t$.

Conversely, suppose that $r \mid t$, so that $x \equiv g^{r j}\left(\bmod p^{n}\right)$ for some integer j. If $j=0$, then $x=1$, which is clearly on its own cycle; since $g^{\varphi\left(p^{n}\right)} \equiv 1\left(\bmod p^{n}\right)$, we may assume that $1 \leq j \leq$ $q-1$. The above argument shows that x is on a cycle if and only if $r q \mid r j\left(a^{s}-1\right)$ for some integer s. Since $1 \leq j \leq q-1$, it follows that $q \mid\left(a^{s}-1\right)$. In particular, if $s=\operatorname{ord}_{q}(a)$, then we may conclude that x lies on a cycle of length s.

Next, x and y will lie on a common cycle if and only if $x \equiv g^{r j}\left(\bmod p^{n}\right)$ and $y \equiv g^{r k}(\bmod$ p^{n}) lie on a common cycle of $G P\left(a, p^{n}\right)$. It is straightforward to verify that this happens if and only if there exists an integer m such that $j a^{m} \equiv k(\bmod q)$-i.e., that j and k lie on a cycle of $G(a, q)$.

Finally, if $\left(j, j a, \ldots, k \equiv j a^{m}, \ldots, j a^{s-1}\right)$ is a cycle in $G(a, q)$, then it follows that $s=\operatorname{ord}_{q}(a)$, which means that $\left(g^{r j}, g^{r j a}, \ldots, g^{r j a^{m}}, \ldots, g^{r j a^{s-1}}\right)$ is a cycle in $P G\left(a, p^{n}\right)$, and we are done.

Theorem P now follows from Lemma 8 and Theorem A , and from the fact that there is one extra cycle in $\operatorname{PG}\left(a, p^{n}\right)$-the cycle consisting of the directed loop from the vertex 0 to itself.

REFERENCE

1. Amos Ehrlich. "Cycles in Doubling Diagrams mod m." The Fibonacci Quarterly 32.1 (1994): 74-78.

AMS Classification Numbers: 11A07, 05D20, 11A15

