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1. AIM OF THE PAPER 

The Jacobsthal polynomials Jn(x) and the Jacobsthal-Lucas polynomials jn(x), whose 
properties have been investigated in [4], are a natural extension of the Jacobsthal numbers Jn and 
the Jacobsthal-Lucas numbers jn which, in turn, have been investigated in [3]. These polyno-
mials are defined by the second-order recurrence relations 

Jn+2(x) = Jn+l{x) + 2xJn(xl [JQ(x) = 0, Jx(x) = 1] (1.1) 
and 

J„+2W = Jn+l(x) + 2xUXX L/0(*) = 2> AW = ll 0 -2) 
respectively, where x is an indeterminate. 

Since throughout this paper we shall make use of the notation and the formulas found in [3] 
and [4], the reader is assumed to be aware of the contents of these papers. 

Definitions: Following the idea exploited in [1], let us define the polynomials Jjp(x) and jjp(x) 
{see (3.9) and (3.10) of [4] for the combinatorial representations of Jn(x) and jn(x)} as 

d L("-i)>2j 
4l\x) = ̂ Jn(x)= I Tr\^-*-ry-1 (n>0), (1.3) 

. ( 1 V , d . . . ^rnrfa-r AHX) = ̂ J»(X)=1^[ r 
\nl2\, 

xr~l (n>l), (1.4) 
J 

and 
4Hx) = il\x) = 0, (1.5) 

where the symbol ["J denotes the greatest integer function, and the bracketed superscript sym-
bolizes the first derivative with respect to x. 

The aim of this paper is to study some properties of the above sequences just as was done in 
[1] for the Fibonacci and Lucas polynomials. Here, we shall also confine ourselves to considering 
the case x = 1. Since letting x = l in (1.1) and (1.2) will yield the Jacobsthal numbers and the 
Jacobsthal-Lucas numbers {cf. (2.3) and (2.4) of [3]} 

j n = ±^±JL md jn = 2"+(rV, 0-6) 

the sequences {Jfp(l)} and {jjp(l)} will be referred to as Jacobsthal and Jacobsthal-Lucas 
derivative sequences. For notational convenience, their terms Jjp(l) and j*p(l) will be denoted 
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by Hn and Kn, respectively. From (1.3)-(L5), the numbers Hn and Kn can be obtained readily for 
the first few values of n. They are shown in Table 1. 

TABLE 1. Tie Numbers Hn and Kn for 0 < n < 8 

n 
4Hl) = H„ 
J?V) = ^ 

0 1 2 3 4 5 6 7 8 
0 0 0 2 4 14 32 82 188 
0 0 4 6 24 50 132 294 688 

2, CLOSEB-FOMM EXPRESSIONS FOR HH AND KH 

Closed-form expressions for Hn and Kn are, quite obviously, useful tools for discovering 
their properties. They are established in this section, where some equivalent expressions for these 
numbers are also found. 

By using formulas (1.4), (1.5), (3.3), and (3.4) of [4], we easily see that 

A(1)(JC) = 4 - A ( X ) = 4 /A(X) , 
ax 

a®(x) = ^-a(x) = A(1)(x) 72 = 2/ A(x), 
ax 

fiP>(x) = 4~$(x) = "A(1)(JC) / 2 = -2 / A(x), ax 

[an(x)il) = —an{x) = MH(x)a( 1 ) (x) = 2waw-!(x) / A(x), 
dx 

and 
[^(jc)p = ̂ -Pn{x) = npr\x)fil\x) = -2npr\x) I A(x). 

Hence, we have 

JPW-i "o"(x)-^"(y) 
A(x) 

_ 2 " - / » - i ( * ) - 2 J « ( * ) 
A2(x) 

and 
yr(x) = 2n/l_1(x). 

Letting x = 1 in (2.1) and (2.2) leads to the relations 

Hn = J?\l)=2{nj"-^2J»y 

and 

which express H„ and .£„ in terms of J„ and _/„. 
By (2.3) and (2.4) above, and (1.6), the following relations can be obtained readily: 

2 " ( 3 K - 4 ) - ( 6 E - 4 ) ( - 1 ) " 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

and 
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^•V+V-W, (2.6) 

which express Hn and Kn in terms of their subscripts. 
Observe that using (2.5) and (2.6) above, along with (1.6), we obtain the relations 

Hn = (3n-4)J^n(-iy ( 2 ? ) 

and 

which express Hn in terms of Jn and Kn in terms of j n , respectively. 

3. BASIC PROPERTIES OF W AND K„ 
ft n 

Some relations involving Hn and Kn are established in this section, most of which are the 
analogs of those found by Horadam in [3] for Jn and j n . Some simple but sometimes tedious 
manipulations involving the use of (2.3)-(2.8) provide the required proofs. To save space, only 
the proofs of Theorems 1-3 will be given in detail in Subsection 3.2. 

3.1. Results 
Generating functions 

ly-w^w- (3,) 

f r y - - 2y2(2~y) rtr> 

These functions can be obtained readily from (3.1) and (3.2) of [4]. 
Recurrence relations 

Kn+2 = Kn+l+2Kn+2jn. (3.4) 

These relations can be obtained readily by calculating at x = 1 the first derivative with respect 
to x of both sides of (1.1) and (1.2). 

Some identities 

H„K„ = | [ ^ _ , - 2J„_1(4J„ -7„_,)] (3.5) 

= lH2n-^[(-2r2 + 3n4"-4] (3.5) 

Hn^2Hn_^Kn-2Jn_x (3.6) 

= 2(«-!)./„_, [by (2.4)], (3.6) 

Kn+l+2Kn_l = 9H„+2Jn + 2\ (3.7) 
H„+K„ = 2H„+1 [from (2.5) and (2.6)], (3.8) 
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Kn-H^AiH^ + J^), (3.9) 

Kn =mn^[4(-lf(3n-l) + 2"+2l (3.10) 

Observe that identity (3.8) is an important feature of Hn and Km being analogous to Jn+jn = 
2Jn+l for Jacobsthal and Jacobsthal-Lucas numbers. 

Simson formula analogs 

j2 _ 1 r/ owo*,2 H^H^-H* =^[{-2y{9n*-\%n + S)-4» -4\, (3.11) 

Kn+lKn_l-K^ = -~[(-2)"(9n2-5) + 4" + 4]. (3.12) 

Limits 
\im H„+l /Hn = Mm Kn+l/Kn = 2, (3.13) 

lim £"„/#„ = 3. (3.14) 

Evaluation of some finite sums 

^ ^ f X ^ - 2 ^ - - ^ [ 2 - 2 - ( - i n 6 W - 5 ) - 9 ] ? (3.15) 

r ^ 2 ^ = 2 A n - l [ ( - l ) " ( & i - l ) + 2lH-2-3]. (3.16) 

Alternative, but perhaps less elegant, expressions for Sn and Tn can be obtained after several 
tedious manipulations involving the use of (2.4) and (2.7). They are 

Sn-^{2\21n^56)~9Kn~{-ir{\2\ni2\-- 5) + 5l], (3.15) 
lUo 

where the symbol \x\ denotes the least integer not less than x, and 

Tn=±[Kn + J„+l + 2"(n-2) + l]. (3.16) 

(3.17) t{f]Hk =2(n-2)3"-3+^2Su+^„ 

where Satb = 1 (0) if a - (*)* is the Kronecker symbol, 

i(fjKk=2ny-2-lsin. (3.18) 

Convolution properties 

Hn = ±JkJn_k-kr + (-l)Vn-W, (3.19) 

Kn =^ lAy»- t -^ [2"7 - ( - l ) " (3» -5 ) ] , (3.20) 
J /c=0 V 
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YjHkHn_k = 3-7[2"-l(9n3 -12n2 + 159rc-80) + (-l)w(18rc3-72/?2 + 30/? + 40)], (3.21) 

^KkKn_k = y\2n-\9n* -51n + \6) + (-\)n(nrf -42#i-8)]. (3.22) 
k=0 

Remarks: 
(i) The geometric series formula has to be used along with (2.3)-(2.8) to prove (3.15)-(3.22). 

(ii) The identities (3.19) and (3.20) can be checked easily by using (2.5), (2.6), and the identities 

t JkJ„-k =\{(n +1)7„ -2Jn+l] (3.23) 
k=Q y 

and 

E JkJn-k =(P + l)jn + 2^+l> P .24) 
k=0 

which are obtainable by using (1.6) and the geometric series formula. 

Congruence properties 

Congruence properties of Hn and Kn deserve a thorough investigation. Nevertheless, in this 
paper we shall confine ourselves to considering the residue of these numbers modulo their sub-
scripts. That Kn is divisible by n for all n > 0 is patent by (2.4). A brief computer experiment 
showed that the values of n < 1000 for which H„ is divisible by n are 1, 2, 4, 20, 100, 220, 500, 
620, and 820. 

Theorem 1: There exist infinitely many values of n for which Hn = 0 (mod n). 

Theorem 2: If p ^ 3 is a prime, then 
3 

(mod/?). 

Theorem 3: If p & 3 is a prime, then Kp = 0 (mod/?2). 

3.2. Proofs of Special Results 

Proof of Theorem 1: We shall prove that, if n = n{k) = 5k4 (k = 0,1,2,...), then Hn = 0 (mod 
n). Let Bn denote the numerator of the fraction on the right-hand side of (2.5). Since n(k) and 
27 are coprime, it suffices to prove that Bn^ = 0 (mod n(k)). After some simple manipulation, it 
is apparent that this is equivalent to proving that 4[2n(k)-(-T)n(k)} = 0 (mod n(k))9 that is, to 
proving the validity of the congruence 

2 W ( ^ 1 (mod 5*). (3.25) 

By Euler's theorem, it is known that 2m = 25"4 = 2^k+l) = 1 (mod5M), whence (3.25) is 
satisfied a fortiori. 

By Table 1, it is immediately seen that the congruence Hn = 0 (mod ri) holds for n = 1, 2, and 
4. We now state a proposition that gives the general solution to the problem of finding all n>4 

Hp^-\2\ 
i+p(-iy(mod3) 
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for which this congruence is satisfied. Of course, this general solution encompasses the case 
n = 5̂ 4 considered in the proof of Theorem 1. 

Proposition 1: For n>4, Hn = Q (mod ri) if and only if 

n = 4p?p?~.(p2 = 5,p3 = 7,p4 = n,...;a2>lai>Q£ori>3), 

and ord(2,/?/,/) divides n for all i such that at >1, where (see [2], p. 71) the symbol ord(a,b) 
[defined for gx.d.(a, b) = 1] denotes the least exponent x for which ax = 1 (mod b). 

The proof of Proposition 1 is extremely long and cumbersome; it is omitted for the sake of 
brevity, but it is available on request. 

Proof of Theorem 2: By (2.5), we get the congruence 

-2P+2~A_ 12 
27 ~ 27 Hp = — — = - — (mod p) (by Fermat's Little Theorem). 

The desired result is obtained readily by observing that the multiplicative inverse of 27 modulo a 
prime p * 3 is {[1 +j9(-l)^(mod3)]/3}3. 

Proof of Theorem 3: First, by Table 1, we observe that K2 = 0 (mod 4) and K3 = 6 (mod 9). 
Then, for p > 5, let us define Mp = Kp/ p and prove that Mp = 0 (mod p). By (2.4) and (1.6), 
we can write 

2^ -2 2 - 2 
M - 2 J_ j = = —— = 0 (modp) (by Fermatss Little Theorem). 
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