RODRIGUES' FORMULAS FOR JACOBSTHAL-TYPE POLYNOMIALS

A. F. Horadam

The University of New England, Armidale 2351, Australia
(Submitted April 1996-Final Revision December 1990)

1. INTRODUCTION

Motivation

Recently [2], some second-order differential properties of generalized Fibonacci polynomials and generalized Lucas polynomials were exhibited.

Here, we intend to
(i) obtain similar differential equations from a slightly different viewpoint in the more general context of the polynomials $W_{n}(x)$ and $W_{n}(x)$ [3], and
(ii) discover analogous equations for Jacobsthal polynomials $J_{n}(x)$ and Jacobsthal-Lucas polynomials $j_{n}(x)$ [4], i.e., non-Fibonacci and non-Lucas polynomials.
Central to the process is the question:
Can we determine Rodrigues' formulas for $J_{n}(x)$ and $j_{n}(x)$ corresponding to those (in a somewhat different notation) for $U_{n}(x)$ and $V_{n}(x)$ in [2]?

Background

Essentially, the following basic material [3] is needed:

$$
\begin{array}{ll}
W_{n+2}(x)=p(x) W_{n+1}(x)+q(x) W_{n}(x), & W_{0}(x)=0, W_{1}(x)=1, \\
W_{n+2}(x)=p(x)^{2} W_{n+1}(x)+q(x)^{2} W_{n}(x), & W_{0}(x)=2, W_{1}(x)=p(x), \tag{1.2}
\end{array}
$$

leading to (if we drop the functional notation)

$$
\begin{align*}
& W_{n}=\frac{\alpha^{n}-\beta^{n}}{\Delta} \tag{1.3}\\
& W_{n}=\alpha^{n}+\beta^{n} \tag{1.4}
\end{align*}
$$

where

$$
\left.\begin{array}{l}
\alpha=\frac{1}{2}\{p+\Delta\}, \tag{1.5}\\
\beta=\frac{1}{2}\{p-\Delta\}, \\
\Delta=\sqrt{p^{2}+4 q}=\alpha-\beta
\end{array}\right\}
$$

Differentiating once w.r.t. x gives

$$
\begin{equation*}
\Delta^{\prime}=\frac{p p^{\prime}+2 q^{\prime}}{\Delta} . \tag{1.6}
\end{equation*}
$$

Specialized cases of (1.1) and (1.2) are generalized the Fibonacci and Lucas polynomials $F_{n}=W_{n}$ and $L_{n}=W_{n}$, for which $p=x, q=1$, and the Jacobsthal and Jacobsthal-Lucas polynomials J_{n} and j_{n}, for which $p=1, q=2 x$. (See [3] for other examples of "Fibonacci-type" polynomials, e.g., Pell, Chebyshev, and Fermat.)

Two dichotomous situations thus arise:
A. $\quad q^{\prime}=0$ for "Fibonacci-type" polynomials like F_{n} and L_{n};
B. $p^{\prime}=0$ for J_{n} and j_{n}.

Immediately from (1.6) we have

$$
\Delta^{\prime}=\left\{\begin{array}{l}
\frac{p p^{\prime}}{\Delta} \tag{1.6A}\\
\frac{2 q^{\prime}}{\Delta}
\end{array}\right.
$$

Crucial to the theory are the derivatives [3]

$$
W_{n}^{\prime}= \begin{cases}n p^{\prime} W_{n} & \left(q^{\prime}=0\right) \tag{1.7}\\ n q^{\prime} W_{n-1} & \left(p^{\prime}=0\right)\end{cases}
$$

so, in particular,

$$
\begin{equation*}
j_{n}^{\prime}=2 n J_{n-1} . \tag{1.8}
\end{equation*}
$$

Finally, we record for later use the notation [2]

$$
\begin{equation*}
c_{n, 0}=2 \frac{n!}{(2 n)!} \quad(n \geq 0) \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{n, r}=2 \frac{n!n(n+r)!}{(2 n)!(n+r)(n-r)!} \quad(n \geq r \geq 1) \tag{1.10}
\end{equation*}
$$

whence

$$
\begin{equation*}
c_{n, r+1}=\left(n^{2}-r^{2}\right) c_{n, r} \quad(n \geq r+1 \geq 1) . \tag{1.11}
\end{equation*}
$$

Notation for Theorems: Letters F and $J(j)$ will be appended as subscripts to the Theorem number of theorems relating to Fibonacci-type polynomials and Jacobsthal-type polynomials, respectively. In this symbolism, we will have Theorem $1_{F}, \ldots$, Theorem 3_{J}.

2. SOME BASIC DIFFERENTIAL EQUATIONS FOR RECURRENCES

From (1.3)-(1.7), double differentiation of ${ }^{\circ} W_{n}$ leads to

$$
\Delta^{2} W_{n}^{\prime \prime}=n^{2}\left(p^{\prime}\right)^{2} W_{n}-n p\left(p^{\prime}\right)^{2} W_{n}
$$

whence, with $W_{n}=y$,

$$
\begin{equation*}
\Delta^{2} y^{\prime \prime}+p p^{\prime} y^{\prime}-\left(n p^{\prime}\right)^{2} y=0 \tag{2.1}
\end{equation*}
$$

Alternatively, if we follow the procedure in [2], while using our notation, then we arrive at (2.1) also, a process left to the reader.

Differentiating (2.1) r times in conjunction with Leibniz' rule, we deduce that $z=y^{(r)}=W_{n}^{(r)}$ satisfies the differential equation

$$
\begin{equation*}
\Delta^{2} z^{\prime \prime}+(2 r+1) p p^{\prime} z^{\prime}+\left(p^{\prime}\right)^{2}\left(r^{2}-n^{2}\right) z=0, \tag{2.2}
\end{equation*}
$$

of which (2.1) is the special case when $r=0$.
Illustrations of (2.1) are:
(i) the associated Morgan-Voyce polynomial $C_{n}=y$, for which $p=2+x, q=-1$, leading to [2]

$$
x(x+4) y^{\prime \prime}+(x+2) y^{\prime}-n^{2} y=0 ;
$$

(ii) the Chebyshev polynomial $T_{n}=y$, in which $p=2 x, q=-1(x=\cos \theta)$, yielding

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0
$$

in conformity with [6, p. 260].
Starting now with the double differentiation of W_{n} in (1.3), we eventually arrive at the differential equation

$$
\begin{equation*}
\Delta^{2} W_{n}^{\prime \prime}+3 p p^{\prime} W_{n}^{\prime}-\left(p^{\prime}\right)^{2}\left(n^{2}-1\right) W_{n}=0 \tag{2.3}
\end{equation*}
$$

Compare this with (2.1). A quick check confirms that $r=1$ in (2.2) does indeed give us (2.3), where we invoke (1.7) for $q^{\prime}=0$. Particular instances of (2.3) are
(a) the Morgan-Voyce polynomial B_{n}, for which $p=2+x, q=-1$, giving

$$
x(x+4) B_{n}^{\prime \prime}-3(x+2) B_{n}^{\prime}-\left(n^{2}-1\right) B_{n}=0,
$$

in conformity with [2, p. 455] on making the transformation $n \rightarrow n-1$ for our B_{n};
(b) The Chebyshev polynomial S_{n} (in the notation of [2, p. 453]), where $p=2 x, q=-1$ $(x=\cos \theta)$, for which

$$
\left(1-x^{2}\right) S_{n}^{\prime \prime}-3 x S_{n}^{\prime}+\left(n^{2}-1\right) S_{n}=0
$$

as in [6, p. 260], n being replaced by $n-1$ for our S_{n}.
Now (1.7), where $q^{\prime}=0$, immediately shows that $W_{n}^{(r)}=n p^{\prime} W_{n}^{(r-1)}(r \geq 1)$, i.e.,

$$
\begin{equation*}
W_{n}^{(r-1)}=\frac{1}{n p^{\prime}} W_{n}^{(r)} . \tag{2.4}
\end{equation*}
$$

Hence, $W_{n}^{(r-1)}$ satisfies (2.2). Combining this with (2.2), we deduce that
Theorem $\mathbb{1}_{F}: W_{n}^{(r-1)}$ and $W_{n}^{(r)}$ both satisfy (2.2).
Example ($r=2, n=4 ; p=2 x, q=1$, Pell-type polynomials [3]): $P_{4}^{(1)}=\left(8 x^{3}+4 x\right)^{\prime}$ and $Q_{4}^{(2)}=$ $\left(16 x^{4}+16 x^{2}+2\right)^{\prime \prime}$ both satisfy

$$
\left(x^{2}+1\right) z^{\prime \prime}+5 x z^{\prime}-12 z=0
$$

Observe that (2.2) can be cast in the more general form (cf. [2]):

$$
\begin{equation*}
\left[\Delta^{2 r+1} z^{\prime}\right]^{\prime}=\left(p^{\prime}\right)^{2}\left(n^{2}-r^{2}\right) \Delta^{2 r-1} z \tag{2.5}
\end{equation*}
$$

Following the technique in [2] and using (2.5), we may establish the results corresponding to equations (2.9)-(2.11) in [2], namely (with $\left.D^{(r)} \equiv \frac{d^{r}}{d x^{r}}\right)$:

$$
\begin{align*}
D\left[\Delta^{2 r+1} D^{(n+r)} \Delta^{2 n-1}\right] & =\left(p^{\prime}\right)^{2}\left(n^{2}-r^{2}\right) \Delta^{2 r-1} D^{(n+r-1)} \Delta^{2 n-1} \tag{2.6}\\
D\left[\Delta^{-2 r-1} D^{(n-r-1)} \Delta^{2 n-1}\right] & =\left(p^{\prime}\right)^{2}\left(n^{2}-(r+1)^{2}\right) \Delta^{-2 r-3} D^{(n-r-2)} \Delta^{2 n-1}, \tag{2.7}\\
D\left[\Delta D^{(n+1)} \Delta^{2 n+1}\right] & =\left(p^{\prime}\right)^{2}(n+1)^{2} \Delta^{-1} D^{(n)} \Delta^{2 n+1} \tag{2.8}
\end{align*}
$$

B. Jacobsthal (\equiv non-Fibonacci)-type Polynomials $\left(\boldsymbol{p}^{\prime}=\mathbf{0}\right)$

Trying to apply the method used in [2], or variations of it, to J_{n} and j_{n} is likely to lead to frustration.

Therefore, we abandon this approach and start afresh.
Differentiate twice in the pivotal relation (1.7) for $p^{\prime}=0$. Then

$$
\begin{equation*}
\Delta^{2} W_{n}^{\prime \prime}+\left(q^{\prime}\right)^{2} W_{n}^{\prime}-n(n-1)\left(q^{\prime}\right)^{2} W_{n-2}=0 \tag{2.9}
\end{equation*}
$$

wherein the diminished subscript in the undifferentiated polynomial is particularly to be noted. [Check (2.9) when, for example, $j_{4}=8 x^{2}+8 x+1, j_{6}=16 x^{3}+36 x^{2}+12 x+1$, for which $p=1$, $q=2 x, \Delta^{2}=1+8 x$.]

Continued differentiation with recourse to Leibniz' rule, as in [2], reveals the generalized form of (2.9) to be $\left(z_{n}=W_{n}^{(r)}\right)$

$$
\begin{equation*}
\Delta^{2} z_{n}^{\prime \prime}+\left(4 r+q^{\prime}\right) q^{\prime} z_{n}^{\prime}-n(n-1)\left(q^{\prime}\right)^{2} z_{n-2}=0 \tag{2.10}
\end{equation*}
$$

Putting $r=0$ in (2.10) obviously leads us back to (2.9).
Repeated differentiation in (1.3) next yields, with little difficulty,

$$
\begin{equation*}
\Delta^{2} W_{n}^{\prime \prime}+3\left(q^{\prime}\right)^{2} W_{n}^{\prime}-n(n-1)\left(q^{\prime}\right)^{2} W_{n-2}=0 \tag{2.11}
\end{equation*}
$$

Contrast this with (2.3). One may readily verify (2.11) for, say, $J_{5}=4 x^{2}+6 x+1, J_{7}=8 x^{3}+$ $24 x^{2}+10 x+1$.

Proceeding for the sake of interest to differentiate (2.11) may times, we eventually arrive at the generalization $\left(z_{n}=W_{n}^{(r-1)}\right)$

$$
\begin{equation*}
\Delta^{2} z_{n}^{\prime \prime}+\left(4 r+q^{\prime}\right) q^{\prime} z_{n}^{\prime}-n(n-1)\left(q^{\prime}\right)^{2} z_{n-2}=0 \tag{2.12}
\end{equation*}
$$

Substituting $r=1$ clearly reproduces (2.11), since $q^{\prime}=2$.
Bearing in mind (1.7) with $p^{\prime}=0$ and (2.12), we conclude that
Theorem $1_{J}: J_{n}^{(r-1)}$ and $j_{n}^{(r)}$ both satisfy (2.10).
Analogously to (2.5), we see that (2.10) may be reformulated as

$$
\left[\Delta^{2 r+1} z_{n}^{\prime}\right]^{\prime}=\left(q^{\prime}\right)^{2} n(n-1) \Delta^{2 r-1} z_{n-2}
$$

Corresponding to (2.6)-(2.8), we derive

$$
\begin{align*}
D\left[\Delta^{2 r+1} D^{(n+r)} \Delta^{2 n-1}\right] & =\left(q^{\prime}\right)^{2} n(n-1) \Delta^{2 r-1} D^{(n+r-3)} \Delta^{2 n-1} \tag{2.13}\\
D\left[\Delta^{-2 r-1} D^{(n-r-1)} \Delta^{2 n-1}\right] & =\left(q^{\prime}\right)^{2} n(n-1) \Delta^{-2 r-3} D^{(n-r-4)} \Delta^{2 n-1} \tag{2.14}\\
D\left[\Delta D^{(n+1)} \Delta^{2 n+1}\right] & =\left(q^{\prime}\right)^{2} n(n+1) \Delta^{-1} D^{(n-2)} \Delta^{2 n+1} \tag{2.15}
\end{align*}
$$

3. RODRIGUES' FORMULAS

Rodrigues' formulas for $W_{n},{ }^{9} W_{n}\left(\right.$ when $q^{\prime}=0$) and for J_{n}, j_{n} (when $p^{\prime}=0$) are now determined.
A. Case $q^{\prime}=0$.

Procedures followed in [2] using (1.9) will largely be applied here.

Theorem $\mathbf{2}_{F}$:

(i) $W_{n}=\frac{n c_{n, 0}}{\left(p^{\prime}\right)^{n-1}} \Delta^{-1} D^{(n-1)} \Delta^{2 n-1}$;
(ii) $W_{n}=\frac{c_{n, 0}}{\left(p^{\prime}\right)^{n}} \Delta D^{(n)} \Delta^{2 n-1}$.

Proof: Definitions (1.3) and (1.4) disclose that

$$
\begin{equation*}
W_{n+1}=\frac{1}{2}\left[p W_{n}+\Delta^{2} W_{n}\right] \tag{3.1}
\end{equation*}
$$

Assuming (i), (ii) in Theorem 2_{F}, we then have, on simplifying,

$$
\begin{equation*}
W_{n+1}=\frac{n!\Delta}{(2 n)!\left(p^{\prime}\right)^{n}}\left[p D^{(n)} \Delta^{2 n-1}+n p^{\prime} D^{(n-1)} \Delta^{2 n-1}\right] . \tag{3.2}
\end{equation*}
$$

But, by Leibniz' rule,

$$
\begin{align*}
D^{(n+1)} \Delta^{2 n+1} & =D^{(n)}\left\{(2 n+1) p p^{\prime} \Delta^{2 n-1}\right\} \tag{3.3}\\
& =(2 n+1) p^{\prime}\left\{p D^{(n)} \Delta^{2 n-1}+n p^{\prime} D^{(n-1)} \Delta^{2 n-1}\right\}
\end{align*}
$$

since $p^{\prime \prime}=0$. Accordingly, (3.2), (3.3) yield

$$
W_{n+1}=\frac{2(n+1)!\Delta}{(2 n+2)!\left(p^{\prime}\right)^{n+1}} D^{(n+1)} \Delta^{2 n+1}
$$

in conformity with Theorem 2_{F} (ii) and (1.9).
Furthermore, from (1.7),

$$
\begin{aligned}
W_{n+1} & =\frac{1}{(n+1) p^{\prime}} W_{n+1}^{\prime} \\
& =\frac{1}{(n+1) p^{\prime}} \frac{c_{n+1,0}}{\left(p^{\prime}\right)^{n+1}} D\left(\Delta D^{(n+1)} \Delta^{2 n+1}\right) \quad \text { by Theorem } 2_{F}(\mathrm{ii}) \\
& =\frac{2(n+1)}{\left(p^{\prime}\right)^{n}} c_{n+1,0} \Delta^{-1} D^{(n)} \Delta^{2 n+1} \quad \text { by }(2.8)
\end{aligned}
$$

in agreement with Theorem $2_{F}(\mathrm{i})$. Consequently, Theorem 2_{F} is completely proved.
Example (Chebyshev polynomials [3], $p=2 x, q=-1$):

$$
\begin{aligned}
& W_{5}=16 x^{4}-12 x^{2}+1\left(=U_{4}[5, \text { p. } 256]\right) \\
& W_{5}=2\left(16 x^{5}-20 x^{3}+5 x\right)\left(=2 T_{5}[5, \text { p. } 256]\right)
\end{aligned}
$$

See also [7, p. 755]. Be it noted that in [6] the Rodrigues formulas for Chebyshev polynomials are given in terms of Gamma functions.

More generally,

Theorem 3_{F} :

(i) $W_{n}^{(r)}=\frac{c_{n, r+1}}{n\left(p^{\prime}\right)^{n-2 r-1}} \Delta^{-2 r-1} D^{(n-r-1)} \Delta^{2 n-1}$;
(ii) $W_{n}^{(r)}=\frac{c_{n, r}}{\left(p^{\prime}\right)^{n-2 r}} \Delta^{-2 r+1} D^{(n-r)} \Delta^{2 n-1}$.

Proof:
(i) Induction on r is employed. The Theorem is true for $r=0$ [Theorem $\left.2_{F}(\mathrm{i})\right]$ and may be verified for $r=1,2$. Assume it is true for $r=k$. Then

$$
\begin{aligned}
W_{n}^{(k+1)} & =\frac{c_{n, k+1}}{n\left(p^{\prime}\right)^{n-2 k-1}} D\left[\Delta^{-2 k-1} D^{(n-k-1)} \Delta^{2 n-1}\right] \text { by Theorem } 3_{F}(\mathbf{i}) \\
& =\frac{c_{n, k+2}}{n\left(p^{\prime}\right)^{n-2(k+1)-1}}\left[\Delta^{-2(k+1)-1} D^{(n-(k+1)-1)} \Delta^{2 n-1}\right] \text { by }(2.7)
\end{aligned}
$$

as expected. Thus, the Theorem is true for $r=k+1$. Hence, it is true for all r.
(ii)

$$
\begin{aligned}
W_{n}^{(r)} & =n p^{\prime} W_{n}^{(r-1)} \text { by }(1.7) \\
& =n p^{\prime} \frac{c_{n, r}}{n\left(p^{\prime}\right)^{n-2 r+1}} \Delta^{-2 r+1} D^{(n-r)} \Delta^{2 n-1} \quad \text { by Theorem } 3_{F}(\mathrm{i}) \\
& =\frac{c_{n, r}}{\left(p^{\prime}\right)^{n-2 r}} \Delta^{-2 r+1} D^{(n-r)} \Delta^{2 n-1}
\end{aligned}
$$

as desired. Thus, Theorem 3_{F} is completely established.

Examples:

Chebyshev: $W_{5}^{(1)}=8 x\left(8 x^{2}-3\right)$;
Fermat: $\quad \mathscr{W}_{4}^{(2)}=36\left(27 x^{2}-4\right)$. (Here, $p=3 x, q=-2$.)
B. Case $p^{\prime}=0$.

Efforts to exploit the techniques of the theory when $q^{\prime}=0$ to the related situation when $p^{\prime}=0$ are doomed to disappointment, due mainly to the differing natures of Δ^{\prime} in (1.6A) and (1.6B). A fresh approach is therefore necessary.

Computations rapidly show that, since $\Delta^{\prime}=2 q^{\prime} / \Delta(1.6 \mathrm{~B})$,

$$
\begin{align*}
& D^{(1)} \Delta^{2 n-1}=(2 n-1)\left(2 q^{\prime}\right) \Delta^{2 n-3}, \\
& D^{(2)} \Delta^{2 n-1}=(2 n-1)(2 n-3)\left(2 q^{\prime}\right)^{2} \Delta^{2 n-5}, \tag{3.4}\\
& \cdots \\
& D^{(n-1)} \Delta^{2 n-1}=(2 n-1)(2 n-3)(2 n-5) \cdots \cdots 3\left(2 q^{\prime}\right)^{n-1} \Delta,
\end{align*}
$$

whence

$$
\begin{align*}
& \binom{n}{1} \frac{c_{n, 0}}{\left(q^{\prime}\right)^{n-1}} \Delta^{-1} D^{(n-1)} \Delta^{2 n-1}=\binom{n}{1}, \\
& \binom{n}{3} \frac{c_{n-2,0}}{\left(q^{\prime}\right)^{n-3}} \Delta^{-1} D^{(n-2)} \Delta^{2 n-1}=\binom{n}{3} \Delta^{2}, \tag{3.5}\\
& \ldots \\
& \left\{\begin{array}{c}
\binom{n}{n-1} \frac{c_{2,0}}{\left(q^{\prime}\right)^{1}} \Delta^{-1} D^{(1)} \Delta^{2 n-1}=\binom{n}{n-1} \Delta^{n-2}, n \text { even, } \\
\binom{n}{n} \frac{c_{1,0}}{\left(q^{\prime}\right)^{1}} \Delta^{-1} D^{(1)} \Delta^{2 n-1}=\binom{n}{n} \Delta^{n-1}, n \text { odd. }
\end{array}\right.
\end{align*}
$$

Differentiating once more in (3.4) gives rise to

$$
\begin{equation*}
D^{(n)} \Delta^{2 n-1}=(2 n-1)(2 n-3)(2 n-5) \cdots \cdots 3 \cdot 1\left(2 q^{\prime}\right)^{n} \Delta^{-1} \tag{3.6}
\end{equation*}
$$

Initially

$$
\begin{equation*}
D^{(0)} \Delta^{2 n-1}=\Delta^{2 n-1} . \tag{3.7}
\end{equation*}
$$

Reassembling the ideas in (3.4), (3.5), and (3.6), we arrive at

$$
\begin{align*}
& \binom{n}{0} \frac{c_{n, 0}}{\left(q^{\prime}\right)^{n}} \Delta D^{(n)} \Delta^{2 n-1}=\binom{n}{0}, \\
& \binom{n}{2} \frac{c_{n-2,0}}{\left(q^{\prime}\right)^{n-2}} \Delta D^{(n-1)} \Delta^{2 n-1}=\binom{n}{2} \Delta^{2}, \tag{3.8}\\
& \ldots \\
& \left\{\begin{array}{cc}
\binom{n}{n} \frac{c_{2,0}}{\left(q^{\prime}\right)^{0}} \Delta D^{(1)} \Delta^{2 n-1}=\binom{n}{n} \Delta^{n}, & n \text { even, } \\
\binom{n}{n-1} \frac{c_{1,0}}{\left(q^{\prime}\right)^{0}} \Delta D^{(1)} \Delta^{2 n-1} & =\binom{n}{n-1} \Delta^{n-1}, \\
n \text { odd. }
\end{array}\right.
\end{align*}
$$

Because the left-hand forms in (3.5) and (3.8) resemble the Rodrigues formulas in Theorem 2_{F}, we feel justified to appropriate to them the name of Rodrigues-type expressions.

Now, $p=1$ and $q=2 x$ in (1.1), (1.3), and (1.5) indicate that

$$
\begin{align*}
J_{n} & =\frac{(1+\Delta)^{n}-(1-\Delta)^{n}}{\Delta} \quad\left(\Delta^{2}=1+8 x\right) \\
& =\frac{1}{2^{n-1}} \sum_{k=0}^{\left[\begin{array}{c}
n-1] \\
2
\end{array}\right.}\binom{n}{2 k+1} \Delta^{2 k}=\frac{1}{2^{n-1}}\left[\binom{n}{1}+\binom{n}{3} \Delta^{2}+\binom{n}{5} \Delta^{4}+\cdots+\left\{\begin{array}{l}
\left(\begin{array}{l}
n-1 \\
n-1 \\
n \\
n
\end{array}\right) \Delta^{n-2}
\end{array}\right]\left\{\begin{array}{l}
n \text { even, } \\
n \text { odd, }
\end{array}\right.\right. \\
& =\text { a sum of expressions of Rodrigues-type (3.5). } \tag{3.9}
\end{align*}
$$

Similarly, use of (1.2), (1.4), and (1.5) gives rise to

$$
\begin{align*}
j_{n} & =(1+\Delta)^{n}+(1-\Delta)^{n}=\frac{1}{2^{n-1}} \sum_{k=0}^{\left[\frac{n}{2}\right]}\binom{n}{2 k} \Delta^{2 k} \\
& =\frac{1}{2^{n-1}}\left[\binom{n}{0}+\binom{n}{2} \Delta^{2}+\binom{n}{4} \Delta^{4}+\cdots+\left\{\begin{array}{l}
\left(\begin{array}{l}
n \\
n \\
\left(\begin{array}{l}
n
\end{array}\right. \\
n-1
\end{array}\right) \Delta^{n-1}
\end{array}\right]\left\{\begin{array}{l}
n \text { even, } \\
n \text { odd, }
\end{array}\right.\right. \\
& =\text { a sum of expressions of Rodrigues-type (3.8). } \tag{3.10}
\end{align*}
$$

Combining (3.9) and (3.10), we then conclude that
Theorem 2_{J} : The Rodrigues formula analogs for J_{n} and j_{n} are given by (3.9) and (3.10).
Examples:

$$
\begin{aligned}
& J_{6}=\frac{1}{32}\left[\binom{6}{1}+\binom{6}{3}(1+8 x)+\binom{6}{5}(1+8 x)^{2}\right]=1+8 x+12 x^{2} \\
& j_{6}=\frac{1}{32}\left[\binom{6}{0}+\binom{6}{2}(1+8 x)+\binom{6}{4}(1+8 x)^{2}+\binom{6}{6}(1+8 x)^{3}\right]=1+12 x+36 x^{2}+16 x^{3}
\end{aligned}
$$

Our last major program is to generalize Theorem 2_{J}. Recall, first, that $j_{n}^{(1)}=2 n J_{n-1}(1.8)$.
Elementary calculations involving (1.3) and (1.4) for J_{n} and j_{n} quickly tell us that

$$
\begin{equation*}
J_{n}^{(1)}=\frac{4}{\Delta^{2}}\left(\frac{n}{2} j_{n-1}-J_{n}\right) . \tag{3.11}
\end{equation*}
$$

Subsequent differentiation reveals that

$$
\begin{aligned}
& J_{n}^{(2)}=\frac{4}{\Delta^{2}}\left[n(n-1) J_{n-2}-3 J_{n}^{(1)}\right], \\
& J_{n}^{(3)}=\frac{4}{\Delta^{2}}\left[n(n-1) J_{n-2}^{(1)}-5 J_{n}^{(2)}\right], \\
& J_{n}^{(4)}=\frac{4}{\Delta^{2}}\left[n(n-1) J_{n-2}^{(2)}-7 J_{n}^{(3)}\right],
\end{aligned}
$$

and so on, suggesting the proposition that
Theorem $3_{J}: J_{n}^{(r)}=\frac{4}{\Delta^{2}}\left\{n(n-1) J_{n-2}^{(r-2)}-(2 r-1) J_{n}^{(r-1)}\right\}, r \geq 2$.
Proof: Induction on r demonstrates the validity of this assertion.
Successive differentiations in (1.8) then establish that
Theorem $3_{j}: j_{n}^{(r)}=2 n J_{n-1}^{(r-1)}=\frac{8 n}{\Delta^{2}}\left[(n-1)(n-2) J_{n-3}^{(r-3)}-(2 r-3) J_{n-1}^{(r-2)}\right], r \geq 3$.
Example of Theorems $\mathbf{3}_{J}, \mathbf{3}_{j}(r=2, n=9)$:

$$
J_{9}^{(2)}=\frac{12}{8 x+1}\left[24 J_{7}-J_{9}^{(1)}\right]=24\left(8 x^{2}+20 x+5\right)=\frac{1}{20} j_{10}^{(3)} .
$$

Observations

(i) Summation procedures beginning with the definitions (1.3) and (1.4), and ending with (3.9) and (3.10), cannot be applied to the Fibonacci-type polynomials. This is because (3.9) and (3.10) are tied irrevocably to (3.5) and (3.8), both of which depend on $p^{\prime}=0$.
(ii) Corresponding to (3.1) for Fibonacci-type polynomials, for J_{n} and j_{n} we may derive

$$
\begin{equation*}
W_{n+1}=\Delta^{2} W_{n}-q^{2} W_{n-1} . \tag{3.12}
\end{equation*}
$$

Use of the Leibniz rule nexus in Theorem 2_{F} is impossible in the case of Jacobsthal-type polynomials J_{n} and j_{n} because of the diminished subscript for ${ }^{\circ} W$ on the right-hand side.
(iii) In (3.11), where $r=1$, the appearance of $\frac{n}{2} j_{n-1}$, which seems to break the pattern of the theorem, requires explanation. From (1.8),

$$
\frac{n}{2} j_{n-1}=\frac{n}{2} \int_{0}^{x} \frac{d}{d x} j_{n-1} d x=\frac{n}{2} \cdot 2(n-1) \int_{0}^{x} J_{n-2} d x=n(n-1) J_{n-2}^{(-1)},
$$

where integration is represented by the negative unit superscript. With this symbolism, the pattern in Theorem 3_{J} is valid for $r \geq 1$, and hence that in Theorem 3_{j} for $r \geq 2$.

4. ILLUSTRATION OF THEORY WHEN $n=5$ (i.e., $2 n-1=9$)

Now

$$
\begin{align*}
& D^{(1)} \Delta^{9}=9\left(p p^{\prime}+2 q^{\prime}\right) \Delta^{7}, \text { where } \Delta^{2}=p^{2}+4 q(1.5), \\
& D^{(2)} \Delta^{9}=9\left\{7\left(p p^{\prime}+2 q^{\prime}\right)^{2} \Delta^{5}+\left(p^{\prime}\right)^{2} \Delta^{7}\right\}, \tag{I}\\
& D^{(3)} \Delta^{9}=9\left\{7\left[5\left(p p^{\prime}+2 q^{\prime}\right)^{3} \Delta^{3}+3\left(p^{\prime}\right)^{2}\left(p p^{\prime}+2 q^{\prime}\right) \Delta^{5}\right]\right\}, \\
& D^{(4)} \Delta^{9}=9 \cdot 7 \cdot 3\left[5\left(p p^{\prime}+2 q^{\prime}\right)^{4} \Delta+10\left(p^{\prime}\right)^{2}\left(p p^{\prime}+2 q^{\prime}\right)^{2} \Delta^{3}+\left(p^{\prime}\right)^{4} \Delta^{5}\right] .
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\frac{5 \Delta^{-1} D^{(4)} \Delta^{9}}{9 \cdot 7 \cdot 5 \cdot 3 \cdot\left(p^{\prime}\right)^{4}}=\frac{1}{\left(p^{\prime}\right)^{4}}\left\{\binom{5}{4}\left(p p^{\prime}+2 q^{\prime}\right)^{4}+\binom{5}{2}\left(p^{\prime}\right)^{2}\left(p p^{\prime}+2 q^{\prime}\right)^{2} \Delta^{2}+\binom{5}{0}\left(p^{\prime}\right)^{4} \Delta^{4}\right\} . \tag{I}
\end{equation*}
$$

So, for $q^{\prime}=0$, on simplifying,

$$
\begin{aligned}
\frac{1}{2^{4}}(\text { R.H.S. }) & =p^{4}+3 p^{2} q+q^{2}=W_{5}, \\
& = \begin{cases}16 x^{4}+12 x^{2}+1 & \text { for the Pell polynomial } P_{5}[3]: p=2 x, q=1, \\
\left(1+6 x+4 x^{2}\right. & \text { for the Jacobsthal polynomial } \left.J_{5}: p=1, q=2 x\right)\end{cases}
\end{aligned}
$$

Differentiate (I) again to get

$$
\begin{equation*}
D^{(5)} \Delta^{9}=9 \cdot 7 \cdot 5 \cdot 3 \cdot\left[\frac{\left(p p^{\prime}+2 q^{\prime}\right)^{5}}{\Delta}+10\left(p^{\prime}\right)^{2}\left(p p^{\prime}+2 q^{\prime}\right)^{3} \Delta^{2}+5\left(p^{\prime}\right)^{4}\left(p p^{\prime}+2 q^{\prime}\right) \Delta^{3}\right] \tag{II}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{\Delta D^{(5)} \Delta^{9}}{9 \cdot 7 \cdot 5 \cdot 3 \cdot 1 \cdot\left(p^{\prime}\right)^{5}}=\frac{1}{\left(p^{\prime}\right)^{5}}\left\{\binom{5}{5}\left(p p^{\prime}+2 q^{\prime}\right)^{5}+\binom{5}{3}\left(p^{\prime}\right)^{2}\left(p p^{\prime}+2 q^{\prime}\right)^{3} \Delta^{2}+\binom{5}{1}\left(p^{\prime}\right)^{4}\left(p p^{\prime}+2 q^{\prime}\right) \Delta^{4}\right\} \tag{II'}
\end{equation*}
$$

whence, for $q^{\prime}=0$,

$$
\begin{aligned}
\frac{1}{2^{4}}(\text { R.H.S. }) & =p^{5}+5 p^{3} q+5 p q^{2}=W_{5}, \\
& = \begin{cases}32 x^{5}+40 x^{3}+10 x & \text { for Pell - Lucas polynomials [3] } \\
\left(1+10 x+20 x^{2}\right. & \text { for Jacobsthal -Lucas polynomials })\end{cases}
\end{aligned}
$$

On the other hand, when $p^{\prime}=0$, we obtain the results (3.4)-(3.8) and hence (3.9) and (3.10).
Notice, particularly, that the general expressions for W_{5} and W_{5} above are valid for both Fibonacci-type and Jacobsthal-type polynomials, even though $q^{\prime}=0$.

This is because the binomial coefficients associated with the powers of Δ in (I') and (II') are the same as those in (3.9) and (3.10), since $\binom{n}{m}=\binom{n}{n-m}$.

Expressions for W_{n} and \mathscr{W}_{n} may be sighted in [5] in a notation slightly varied from that used here.

5. CONCLUSION

While the author of [2] evidently did not consider this theory as applying to Jacobsthal-type polynomials, one observes that if his numerical parameter q in [2, eqns. (1.1), (1.2)] is allowed to be functional $q(x)=-2 x$ with accompanying change in his x and p, then J_{n} and j_{n} can be incorporated into his system. For example, his U_{5} ([2, eqn. (1.12)] reduces to $1+6 x+4 x^{2}=J_{5}$.

So we come to our rest, having achieved the objectives (i) and (ii) in Section 1 which motivated our undertaking. Many facets of the work were revealed with others to be investigated. The unexpected complications in the patterns of behavior of J_{n} and j_{n} (and W_{n} and W_{n}) have added zest to the hunt.

Questions: Does there exist a general formula for the coefficients of the Jacobsthal-type polynomials in terms of the Gamma function in the sense of [1, Table 22.3]? If so, is it attainable using the techniques of this paper? Can, further, the theory be extended to the situation when both $p(x)$ and $q(x)$ are linear polynomials?

REFERENCES

1. M. Abramowitz \& I. Stegun, eds. Handbook of Mathematical Functions. New York: Dover Publications, 1965.
2. R. André-Jeannin. "Differential Properties of a General Class of Polynomials." The Fibonacci Quarterly 32.5 (1994):445-54.
3. A. F. Horadam. "A Synthesis of Certain Polynomial Sequences." In Applications of Fibonacci Numbers 6:215-29. Ed. G. E. Bergum, A. N. Philippou, \& A. F. Horadam. Dordrecht: Kluwer, 1996.
4. A. F. Horadam. "Jacobsthal Representation Polynomials." The Fibonacci Quarterly. $\mathbf{3 5 . 2}$ (1997):137-48.
5. E. Lucas. Théorie des Nombres. Paris: Blanchard, 1961.
6. W. Magnus, F. Oberhettinger, \& R. P. Soni. Formulas and Theorems for the Special Functions of Mathematical Physics. Berlin: Springer-Verlag, 1966.
7. J. Naas \& H. L. Schmid. Mathematisches Wörterbuch II. Stuttgart: Teubner, 1962.

AMS Classification Number: 11B39

