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1. INTRODUCTION 

A generalization of Pascal's triangle can be defined using the following recurrence scheme. 
Given two rows of values, compute a new row by adding together the four numbers in the 
rhombus above the value to be computed. A sample rhombus is given in Figure 1. The value 16 
is the sum of the four numbers above it in the rhombus configuration. 

3 
454 
16 

FIGURE 1. Sample Rhombus 

In general, we shall start with one 1 in the first row and three l's in the second row. The 
recurrence then determines the subsequent rows. The first few rows of the rhombus are given in 
Figure 2. We assume all blank positions are zero. So, for example, when calculating the second 
entry in the third row the two zeros are assumed to be up two places and up one and to the left. 
We call this array of numbers a Pascal rhombus. 

1 
1 1 1 

1 2 4 2 1 
1 3 8 9 8 3 1 

1 4 13 22 29 22 13 4 1 
FIGURE 2. The First Five Rows of the Rhombus 

This pattern generation scheme arose while studying a switch-setting problem [4], [5]. Given 
an n by m arrangement of switches, some on and some off, the goal is to achieve an ail-off 
configuration of the switches. Many puzzles and computer games, such as "Button Madness" and 
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"Lights Out" are built using this idea. The operation available involves activating a particular 
switch, causing it and its rectilinearly adjacent neighbors to change states. Part of our method for 
solving the switch-setting problem involved the following: begin with an initial (row) vector con-
taining one 1 and a second vector containing the three l's under the initial vector's 1. We then 
"grew" new vectors by applying the rhombus rule recursively. Our work on the switches differed 
in two ways from the Pascal rhombus recurrence presented above. First, the rows in the switch 
problem are bounded by a certain fixed length and are not allowed to grow outward without 
bound on either- the left or the right. Second, since the switches (in the simplest case) have only 
two states, all of the arithmetic is done modulo 2. Similar triangles have been studied in a number 
of papers; a thorough survey can be found in [2]. In particular, the generalized Pascal triangle of 
order 3 consists of the coefficients [n

k\ in the expansion of (1 + x + x2)" [8]. However, this 
generalized triangle of order 3 is defined by a recurrence where each value is the sum of three 
terms, whereas each term in the rhombus is the sum of four terms. 

In Section 2 we discuss various properties of the rhombus, show that the rhombus's elements 
can be given using a family of monic polynomials, and analyze the row sums. In Section 3 we 
define a. modified rhombus by not allowing the rhombus to grow to the left. We exhibit relation-
ships between this left-bounded rhombus and Pascal's rhombus and introduce some graphs to help 
analyze the row sums of the left-bounded rhombus. In Section 4 we discuss an analogy between 
the left-bounded rhombus and the classic Pascal triangle. Finally, in Section 5 we discuss the 
coefficients in the rhombus modulo 2 and propose some directions for future work. 

2. SOME PROPERTIES OF THE RHOMBUS 

In this section we consider some properties of Pascal's rhombus. First, note that each row 
contains two more entries than the previous row, and each row is symmetric around the center 
column. Let [«, k] represent the £* value of the rfi1 row. The row numbering begins at 0 and the 
elements in a row also are numbered beginning at 0. We have [0,0] = 1 and [n, 0] = [n, 2ri\ - 1 for 
all n. The rhombus then is indexed as follows: 

[0,0] 
[1,0] [1,1] [1,2] 

[2,0] [2,1] [2,2] [2,3] 
[3,0] [3,1] [3,2] [3,3] [3,4] 

The rhombus defining recurrence relation can be written as 

[n + \k] = {n,k] + [n,k-l]-h[^k~2] + {n-lk-2l (1) 

Letting A = 1 in (1) gives the following relationship for the second entry of each row: 

[/I + 1,1] = [/I,1] + [/I,0] = [/I,1] + 1. (2) 

Two of the terms are missing in (2) because k-2 is - 1 , and the rhombus's values for negative k 
are taken to be 0. It follows directly from (2) that [n, 1] = n for all n. Writing down the recur-
rences for subsequent terms and solving them gives rise to the following formulas: 

[2,4] 
[3,5] [3,6] 
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[n,2] = (n2+3n-2)/2\ 
[n, 3] = (n3 + 9n2 - 22n +12)/3! 
[n, 4] = (n4 + 18w3 -49n2 + 6n + 48)/4! 
[w, 5] = (n5 + 30n4 - 45n3 - 570n2 +1904« -1680) / 5! 
[w?6] = (^6 + 45w5 + 55«4-2865«3 + 12184w2-18780w + 8640)/6! 

We state the general result below. 

Theorem 1: [n,k] is a polynomial in n of degree k, such that k\[n,k] is monic with integer 
coefficients. 

Proof: First, rewrite (1) as [w, A] - [w - 1 , A] = [n -1, A -1] + [/i - 1 , k - 2] + [w - 2, * - 2]. Treat 
this as an identity in the variable n and constant k, and sum over n. The least value of n to use is 
the last nonzero entry in the appropriate diagonal. It can be written as \_(k +1) / 2j to account for 
parity of k. Then 

[n,k]= J (p-l ,*-l] + p-l ,*-2] + [i-2,it-2])+ '* + 1 

=L¥J 
which, in turn, is equal to 

£ ([i-l,k-l] + 2[i-l,k-2]) + 
<=L¥J 

k + \ hk-2 [n-l,k-2]+\ k + l 

The sequence of polynomials thus continues, with the general recurrence establishing by 
induction that [», k] is a polynomial in n of degree k, such that k\[n, k] is monic with integer coef-
ficients. D 

We next analyze the row sums of the rhombus. 

Theorem 2: Let Tn be the sum of the elements in row n of the Pascal rhombus. Then 
7L, _ (3 + VJ3) 

2 
l i m ^ 

Proof: Using the recurrence in (1), we have that Tn «+i n n—l Let us solve the recur-
rence by setting Tn+2 - 3Tn+l -Tn = 0 and using the initial conditions T0 = l and Tx = 3. (Note: One 
may find it easier to solve by defining T_x = 0 and \ = 1.) Therefore, the characteristic equation is 
r2 - 3r -1 = 0, which has two solutions: rx = (3 + sqrt(13)) /2 ; r2 = (3 - sqrt(13)) / 2 . One can then 
easily determine that 

' 3-f-vr3Yr3-vi3Tx 

Vl3 
Taking the limit as n approaches infinity of the ratio Tn+l I Tn gives the desired result. Thus, the 
ratio of sums of consecutive rows of the rhombus approaches (3 + sqrt(13))/2 - 3.3027756. • 

The first few values of the row sums are 1, 3, 10, 33, 109, 360, 1189, 3927, 12970, 42837, 
141481, and 467280. This sequence has arisen in the literature before, e.g., in [7] and [9]. Theo-
rem 3 shows that the Fibonacci sequence is embedded in the rhombus as alternating sum of row 
elements. 
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Theorem 3: F(n +1), the n + 1st Fibonacci number, is equal to 

F(»+i)=f;(-i)'[»,/]. 
/=o 

Proof: By induction on n. The base case is trivial. Assume it is true for the first n Fibonacci 
numbers. Consider F(n +1), which we claim is the alternating sum of elements on row number n. 
Now look at [n -1, i]. Suppose / is even. By definition, [n -1, i] is used to compute three distinct 
elements on row n. It is easy to see that two of those elements will have positive coefficients and 
one a negative coefficient. The net effect is that of adding [n-1, i] once. Likewise, if i is odd, the 
net effect is that of subtracting [n-l, i] once. By the same token, each term from row n-2 is 
used once (and with the same sign on row n as on row n-2) in the computation of the sum of 
row n. Hence, the alternating sum of the elements on row n is the sum of the alternating sums on 
rows n-l and n-2. D 

We shall define a graph based on the rhombus in a straightforward manner as described in 
Theorem 4. This graph will be used in Section 3 to analyze the left-bounded rhombus. 

Theorem 4: Define an infinite directed graph G - (V, E) by using as the vertex set V points 
corresponding to the nonzero entries [n, k] of the Pascal rhombus, and creating directed edges in 
E from the vertex [n,k] to the vertices [n + l,k], [/i + l,£ + l], [n + l,k + 2], and [w + 2, k+2]. 
Then the number of distinct paths from [0,0] to [w, k] is given by the value of [n, k]. 

Proof: Again, an easy proof is available by induction. D 

3S THE LEFT-BOUNDED RHOMBUS 

In the switch-setting problem (see [4], [5]), vectors were built using the rhombus rule modi-
fied so as to use leftmost column entries that remained zero. In this case, an array arises that is 
left-justified: the only new nonzero values in successive rows appear on the right. The result, 
which we call a left-hounded rhombus, is shown in Figure 3. 

1 
1 1 
3 2 1 
6 7 3 1 

16 18 12 4 1 
40 53 37 18 5 1 

FIGURE 3e Left-Bcranckd Rhombus 

Similar looking triangles, such as Stirling's triangle and Euler's triangles are discussed in, for 
example, [6]. However, those are generated by different formulas. In our left-bounded rhombus, 
each row contains one more element than the previous row. Clearly,, the last element of each row 
is 1 and the next to last element is n. For simplicity in what follows, we use the notation (w, k) to 
index the left-bounded rhombus, as shown below: 
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(0,0) 
0,0) (U) 
(2,0) (2,1) (2,2) 
(3,0) (3,1) (3,2) (3,3) 
(4,0) (4,1) (4,2) (4,3) (4,4) 

Elements in the left-bounded rhombus and the Pascal rhombus are related by equation (3) 
below (which can easily be verified inductively): 

[n, k]-[n,k+ 2] = (n,k-n), where k>n. (3) 

For example, letting n - 3 and k = 4, we have [3,4] - [3,6] = (3,1) or 8 - 1 = 7. Equation (3) 
can be used to extend the left-bounded rhombus leftward beyond the (implicit) column of zeros. 
Since the Pascal rhombus is symmetrical, what is generated is a mirror image of the left-bounded 
rhombus, except that all the entries are negative. In fact, one way of obtaining the left-bounded 
rhombus is to start the Pascal rhombus using the original recurrence, but with the two initial rows 
0 and -101 . Identity (3) also applies to provide an analogous result to Theorem 1, giving (w, k) 
to be a second family of polynomials in n with integer coefficients. The first few values are listed 
below: 

(n,n-2) = (n2+3n-4)/2\ 
(n,n-3) = (n3+9n2-2Sn + 12)/3\ 
(n,n-4) = (n4 + mn3-6]n2-30n + 72)/4\ 
(n,n-5) = (n5+30n4-65n3-75Qn2 + 2344/1-1920)/5! 
(n,n-6) = (n6 +45n5 + 25n4 -3405n3 + 13654n2 -18960^ + 7200)/6! 

The row sums for the left-bounded rhombus are denoted by Un having the first few values: 1, 
2, 6, 17, 51, 154, 473, and 1464. These are more difficult to analyze than the row sums in the 
Pascal rhombus. Nevertheless, the same limiting value of ratios of successive rows exists, as 
shown in Theorem 5. 

Theorem 5: Let Un be the sum of the elements in row n of the left-bounded rhombus D4. Then 

«->oo JJn 2 

The remainder of this section is devoted to the proof of Theorem 5. First, we define some 
additional recurrences that will be used in the proof of Theorem 5. Each recurrence defines an 
array of integers Di and a graph G, (using the procedure described in Theorem 4). 
D4: the usual rhombus with left boundary (see Fig. 3 and Fig. 4a). The corresponding graph is 
denoted G4. 

Define a double jump in G4 to be an edge that goes from row / to row i + 2. 
G3: take a G4 graph and remove all double jumps (see Fig. 4b). 
G2: take a G3 graph and remove all vertical edges (see Fig. 4c). 

D2 and D3 are defined accordingly and examples shown in Figure 4. As usual, it will be con-
venient to index the elements by (row, column) beginning with (0,0). We sometimes abuse 
notation and use (?, j) to refer to a particular vertex in a graph, as well as the value in an array. 
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To be clear, we sometimes preface the index by a graph or array name, such as G4(0,0). Also, 
call (0, 0) the root of each graph and call edges from column i to column j ^ i diagonal edges. A 
connection between D2 and Pascal's triangle will be discussed in Section 4. 

o o o 
FIGURE 4a. G4 

K 
04Xj\ 

1 1 

FIGURE 4k ftandZX 

0 1 

1 0- 1 

0 1 

FIGURE 4c, (j2andD2-

To prove Theorem 5, we know that the row sum recurrence is Un+l = 3U„ + Un_l-D4(n, 0), 
so it is enough to show that D4(n, 0) = o(U„) as n -> oo in order to make the argument of Theo-
rem 2 apply. We shall show further that the rows of the left-bounded rhombus are unimodal with 
a maximum value that moves ever rightward. First, note that the path-counting property of Theo-
rem 4 applies to G4, G3, and G2. The following propositions aid in the proof of Theorem 5 as 
well as show some interesting properties of the aforementioned recurrences. 

Proposition 6: In D2, for all sufficiently large n and fixed j , D2{ny j) < D2(n, j + 2). 
Proof: Let f(ri) denote the column of the maximum value on row n of D2. If more than 

one position on row n is equal to the maximum, let / («) denote the leftmost such column. Our 
method also shows that, for sufficiently large n, D2(n, j) < D2(n, j + 2). Consider row 2k on D2, 
for some k>\ and column 2p for some p>\. Represent a path from the root of G2 to 
G2(2k, 2p) as a sequence of -l1 s and Ts, where -1 indicates an edge from column / to i -1 and 1 
indicates an edge from i to i + l. So, for example, sequence 1,-1 is a path from G2(0,0) to 
G2(2, 0). The length of the sequence is 2k and its sum is 2p. Let us first count the total number 
of sequences from (0,0)—including "Illegal" sequences having prefixes whose sum is negative. 
There are (2k choose (k-p)) such sequences. Now we must subtract the number of illegal 
sequences. It can be observed that this is equal to the number of sequences of length 2k whose 
sum is 2p-\-2. This may be seen by looking at each path in Figure 5 from the root to G2(2k, 2p) 
that uses a vertex in column - 1 . The portion of each of these paths that is below its first visit 
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to column -1 may then be reflected about column - 1 , leading to paths that terminate at (2k, 
-2p - 2). Thus, the number of illegal sequences is (2k choose (k - p -1)), which means that the 
number of paths in G2 from the root to (2k, 2p) is (2k choose (k-p))- (2k choose (k - p -1)). 
Comparing (n, j) and (n, j + 2) leads us to look to satisfy the following inequality, 

2k 
k-p 

2k 
k-p-l)-\k-p-\ 

2k 2k 
k-p-2Y 

which is equal to 
2fr!(2/7 + l) 2k\(2p + ?>) 

(k-p)\(k-p-l)\ (k-p-l)\(k+p + 2)\ 

and simplifying yields 2p2 +4p + l< k. It is easy to see that this inequality is satisfied when 
p ~ sqrt(£) / 2. To be exact, D2(n, j) > D2(n, j - 2) if and only if j > f(sqrt(» + 2))] - 2. The 
same method works for odd rows/columns; the details are omitted. D 

Ov [0,0] 

o 

o o 

o yo 
0 

o o ox o o o ° 

o o p o o o o o 
o o X o o o 

° o o o o o o o 

4 - 3 - 2 - 1 0 1 2 

•*• Reflected path 
FIGURE 5 

o 

o 

o 

o 

o 

Proposition 7: In D3, for all sufficiently large n and fixed c, D3(n, c) <D3(n,c + l). 

Proof: In D3, we want to show that, for any fixed column number c +1 and sufficiently large 
n, D3(n, i) < D3(n, c +1) for each i < c +1. Consider a G3 graph with n rows. It is easy to see that 
the number of paths to G3(n, c + l) having exactly d diagonal edges is given by 

D3(n,c + \) = [^_^D2(d,c + l). (4) 

The careful reader will observe that (4) is often zero, depending on the parity of n and d. Assume 
without loss of generality both n and c + l are even; otherwise, if c +1 is odd, we may choose n 
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odd and the proof follows in a similar manner. In order to compare D3(n, c) and D3(n, c +1), we 
group paths to G3(n, c) having d diagonal edges with paths to G3(/i, c + 1) having d + \ diagonal 
edges. Based on the parity of n and d9 each group has paths to both c and c +1 and every path is 
in some group. Thus, we want to compare the following: 

D,(n,c) = f{n " r f W c ) (5) 

and 

Let us compare the terms of the summations in (5) and (6) one by one: the (n choose x) term 
of (5) with the (n choose x-l) term of (6), and so on. It is easy to see that the D2 terms in each 
summation increase as the index—din the case of (5) and dx in the case of (6)—increases. Also, 
by Proposition 6, we may select n sufficiently large so that, for all x>n/2, we have that 
D2(x,c + l)>2*D2(x-l,c). This implies that 

(B-(3+i))^Hc+^(B!:rf)A(rf.c)+(B^)%c). 
where d + l<n/2 and q = n/2+d + l. In visual terms, we line up the terms in (5) and (6) in 
increasing order of the d, dx index as shown below. 

Tennsfrom(5): Q [ ^ ... [ ^ 

Termsfrom(6): ( ^ J ( x ! 2 ) - ( w / 2 ) 

"middle" 

The q term is as far right of the "middle" in (5) as d +1 is to the left in (6)—as d + \ ranges 
from c +1 to n 12. In other words, due to symmetry, these two binomial coefficients yield equal 
values. In this way, the first n/2-c terms to the right of the middle in (5) may be accounted for 
using terms to the left of the middle in (6). Selecting n sufficiently large allows the remaining 
terms to the far right of the middle in (5) to be accounted for by those to the (near) right of the 
middle in (6). D 

We are now ready to complete the proof of Theorem 5. 

Proof of Theorem 5: Let m be a row in D3 such that D3(m, j +1) > D3(m, j) for some fixed 
value of j . Consider a G4 graph G with 2m rows, 0,..., 2m -1. We show that D4(2m -1, j) < 
D4(2m~-l,j + l). Clearly, if we consider all paths in G to row 2m-I from the root with no 
double jumps, the proposition is true from the assumption. Likewise, if we consider all paths in G 
to row 2m -1 with a double jump as the first move and no other double jumps. Using this idea, 
we group paths together as follows: two paths are put in the same group if each have k double 
jumps and if those double jumps occur in the same positions in the edge sequence that defines the 
paths—e.g., k = 2 and the second and fourth edges are double jumps. Note that there are groups 
having between 1 and m double jumps, and for each k there are approximately (2m - k choose k) 

n 
nil 

n 
nl2-
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groups. It is easy to see that, for each group of such paths, the claim is true. Since these groups 
of paths are mutually disjoint, the theorem follows. • 

We conjecture that the location of the maximum value in D4 on row n is at least as large as 
sqrt(/i)/2. The proof of Theorem 5 shows an 0(sqrt(w)) upper bound on the location of the 
maximum. An analogy between the left-bounded rhombus and the classic Pascal triangle is 
explored in the next section. 

4. A CONNECTION WITH PASCAL'S TRIANGLE 

A seemingly different left-bounded array can be constructed using the recurrence for Pascal's 
triangle: 

1 
0 1 

1 1 
0 2 1 

2 3 1 
0 5 4 1 

5 9 5 1 -

FIGURE 6* Left-Bounded Pascal Triangle 

Notice the relationship between this left-hounded Pascal triangle and the array D2 from the 
previous section. D2 is identical to the left-bounded Pascal triangle, except that D2 contains addi-
tional 0 elements. In this section, we use a completely different technique than the one used in 
Section 3 to show that the maximum value moves ever rightward in the left-bounded Pascal 
triangle. This time, the analog of (3) is easily shown to hold; so these table entries are differences 
of binomial coefficients. Hence, the maximum value in row n of this array occurs in the column k 
such that k gives the maximum value of the difference in binomial coefficients in row n of Pascal's 
triangle. But as n grows, by the classical limit theorem of De Moivre and Laplace [1], [3], the 
binomial distribution approaches a normal distribution, given that we choose binomial distribution 
parameters p = q = l/2. In this case, the mean is nil and the standard deviation is sqrt(w/4). 
We are interested in where the maximum (absolute) derivative of this function occurs, i.e., the 
inflection points. Using a well-known result [1] in probability and statistics, we have that the 
inflection points are given by x~n!2±4nl2. Thus, the maximum difference on row n of 
Pascal's triangle occurs in column sqrt(w)/2, implying that the maximum value on row n of the 
left-bounded Pascal triangle is in column sqrt(«)/2. For example, if n - 729, the maximum dif-
ference between columns in Pascal's triangle occurs between columns 378 and 379 (note that 
nil- 364.5); computing sqrt(729)/2 gives 13.5. 

5* THE RHOMBUS MOB 2 

In this section we present several conjectures concerning the distribution of the terms in the 
rhombus when arithmetic is done modulo two. Other problems such as divisibility properties, 
distribution of coefficients mod/?, and the investigation of arithmetic fractal structures have been 
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studied for Pascal's triangle and its generalizations [2] and seem to be rich and interesting in the 
rhombus (mod 2), though they also appear difficult to analyze formally. 

Conjecture 1: For any w>l, the sub-rhombus (mod 2) with corner points [2W,2W+1], [2W + 
2n~l -1 ,2* (2n + 2n~l -1)], and [2* + 2n~l -1,2W+1] is identical to the rhombus (mod 2) with corner 
points [0,0], [2n~l -1 ,2* (2W_1 -1)], and [2""1 -1,0], and to the sub-rhombus (mod 2) with corner 
points [2", 0], [2" + 2n~l -1,2 * (2*"1 -1)], and [2" + 2""1 - 1 , 0]. 

One can, in fact, make a stronger self-similarity conjecture, which is illustrated in Figure 7. 

T2'(r-2) is mirror image of T2(r-2) 

FIGURE 7, Self-Similarity in the Rhombus (mod 2) 

Conjecture 2: Let n = 2s -1 be a row number of the rhombus (mod 2) and Is be the number of 
ones on that row. Then 

Is=\[2MH-lt5l where 8 = 2*frac( |) . (7) 

The "frac" in (7) refers to the fractional part of the term si 2. Equation (7) is just a closed form 
of the recurrence I0 = l9 Is = 2* Is_l +1 when s is odd, and Is = 2 * Is_t -1 when s is even. 

Recurrences similar to that in Conjecture 2 also seem to describe the number of ones on rows 
whose row number is 2s -c for each constant c> 1. 

Conjecture 3: The diagonals in the rhombus (mod 2) given by [«, k], for k fixed, are periodic 
with period length 2P

? where p = flog2 k"\ +1 for k > 1, and the period of the [n, 0] diagonal is 1. 

To illustrate Conjecture 3, observe that diagonal [w,6] begins 1, 1, 0, 1, 1, 0, 1, 1 and then 
this sequence of eight values repeats itself. 

One can also observe a strong fractal structure to the rhombus, which is characterized by 
large quadrilateral shaped blocks of zeros, as shown in Figure 8, a depiction of the first 512 rows 
of the rhombus (mod 2) with odd entries colored black and even entries colored white. This leads 
to the following conjecture. 
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Conjecture 4: Let Gn (Hn) be the number of odd (even) coefficients in the first n rows of the 
rhombus. Then, as n approaches infinity, limGnlHn = 0. 

FIGURE 8. Fractal Structure of the Rhombus (mod 2) 
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