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1. INTRODUCTION 

In a series of articles [l]-[3], Andre-Jeannin has recently defined the polynomials Un(p,q; x) 
and Vn(p,q; x) by the recurrence relations (1) and (2), and has studied some of the combinatorial 
properties of the coefficients of Un and Vn as well as some of the differential properties of these 
polynomials. 

U^ix + py/^-qU^ («>2), tf0 = 0 , ^ = 1 (1) 
and 

Vn = (x + p)Vn_x-qVn_2 (»>2), V0 = 2,Vl = x + p. (2) 

The parameters/? and q as well as the variable x are real numbers. If a and p are defined by 

a + p = x + p, afi = q, (3) 

then it is well known that [5] 

and 

where 

U'=-^A> ( 4 a ) 

Vn = a"+fi", (4b) 

A = (x + pf-4q. (5) 

The purpose of this article is to introduce and study some of the properties of the generalized 
polynomial Wn(p,q; x) defined by 

w^ix+pW^x-qw^ipzi), (6) 
where W0 and Wx are specified, as well as those of two other polynomials nn(p,q;x) and 
vn(P><l\x) Aat are very closely associated with U„ and Vn. We shall define these polynomials 
UniP& x) a n d vn(P& x) t 0 b e 

^n = (X + P)Un-l-^Un-2 0 1 ^ 2)> U0 = \Ul = X + P ~ 4% ( 7 ) 
and 

v ^ ^ + ^ K - i - ^ 2 (»^2), v0 = l,vl = x + p + ̂ . (8) 

2, SOME BASIC RELATIONS AMONG Un9 Vm un AND vH 

Using the well-known properties of W„(a,b,p,q) introduced by Horadam [5], we may derive 
a number of relations between Un and Vn. However, we shall not do so except to list a few of the 
important ones that will be required for the remainder of this article. It is easy to show that Wn as 
defined by (6) may be evaluated using the relation [5], 
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K = Wn-qWi*-i (**!)• (9) 
From (9) we can immediately derive the following relations: 

U„ = u„+1-Jq~u„, (ii) 

v„ = U„+i + ̂ U„, (12) 

V„ = u„ + 4qun_l = vn-^vn_v (13) 

From the results in [5], we may also derive the following "Simson" formulas: 

Un+lU„-i-U2
n=-q-\ (14a) 

V^V^-V^q-'A, (14b) 

"„+i"„-i-"n
2=<r1/2AH, (14c) 

v„+lVl-v„2 = -?"-1/2Av, (14d) 

where 

K=x + P-2y[q~, (15a) 

Av = x + p + 2jq, (15b) 

A = A„AV- (15c) 
From (14a-14d), we have the interesting result that 

qiu^u^ - u2„)(ynHvn-x - v„2) = ( « r t v , - ul){vn+xvn_x - vD = V - ' A . (16) 

3. ZEROS AND ORTHOGONALITY PROPERTY OF U„, V„ un, AND v„ 
If" If? If™ If 

Andre-Jeannin ([1], [2]) has shown that 

(„_1 ) / 2sin^ 

and 

Vn = 2qnl2com0, (17b) 

where cos0 = {x+p)l2^Jq. Hence, from (11) and (17a), we get 

^asatap. (17c) 
cos#/2 

Similarly, from (12) and (17a), we have 

:jnmn(2» + W2 ( n d ) 
* sin 0/2 K J 

Hence, the zeros of Un9 V„9 un, and vn are given by 
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U„: xk = -p + 24qcos\t.A k = l,2,...,n-l, 

K- xk=-p + 2 •Jq cos • V In •n\ k = l,2,...,n, 

un- xk = -P + 14qc°s[-j—^-n\ k = l,2,...,n, 

V xk = -p + 2^cos\——^-A k = l,2,...,n. 

(18a) 

(18b) 

(18c) 

(18d) 

Of these, Andre- Jeannin ([1], [2]) has given the zeros for Un and Vn. It should be observed that, 
if p = 2 and q = l, then the above results correspond to the already known results for the zeros of 
B„(x), Cn(x\ b„(x), and c„(x) (see [6], [7], [4]). 

Andre-Jeannin ([1], [2]) has shown further that Un and Vn are orthogonal over the interval 
(-p-2y[q, - p + 2^Jq) with respect to the weight functions wu(x) = V-A" and wv(x) = l/wu(x), 
respectively. Using expressions (17c) and (17d), we may easily prove that un and vn are also 
orthogonal over the same interval, but with respect to the weight functions wu(x) = ^-AM / Av 

and wv(x) = l/wu(x), respectively. 

4. g-MATBIX AND FORMULAS FOR Wnk_v WnU AND Wnk+1 

If we define the generating matrix Q to be 

Q=\ x + p ~q 
1 0 

then it is straightforward to show by induction that 

P = Q * = 
Uk+l ~qUk ' 
. uk ~<lUk-\. 

(19) 

(20) 

The characteristic equation of P is given by 

£-(Uk+l-qUk_l)A + q(Uk
2-Uk+lUk_l) = 0. 

Using relations (10) and (14a), we may reduce the above equation to 

A2-VkA + qk=Q. 

Hence, by the Cayley-Hamilton theorem, we have 

P2=VkP-qkL 

Starting with (21), we may easily show by induction that 

P"(x) = A„(x)P(x)-qkZ„_l(x)I, 

where An(x) satisfies the recurrence relation 

(21) 

(22) 
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Hence , from (20) and (22), w e have 

Q"k(x) = X„(x)Qk(x)-q%_1(x)I. 

Therefore, we have 
U„k(x) = X„(x)Uk(x), 

u*+i(x) = K(x)uk+1(*) - qkK-i(x), 

U*-i(x) = A„(x)C/it_1(x) + ^ - 1 A l _ 1 ( x ) . 
and 

(23) 

(24) 

(25a) 

(25b) 

(25c) 

We now derive similar results for the polynomial W, and thus for the polynomials V, u, and v. 
Consider the matrix 

\wnk+i -qwnk 
-qw„k-i_ 

R = 
Wnk 

Using relation (9) , w e may rewrite R as 

R = m u, nk+l -qu, nk -qW0 
U, 

U, u„k -qUnk-i 

WxQ*-qW&*-\ using (20), 

Qn\WxI-qW,Qr\ 

nk 

nk-l 

-4Unk-l 
-qUnk-2 

Hence, 

W„ nk+l 

Kk 
-qwnk • 
-qKk-i. 

u„k+i ~qU„k 
. u„k -qU„k_i 

Wx -qW0 
W0 Wl-(x + p)W0_ 

F r o m the above identity, w e may derive the following relations after some manipulations using (9) 
and (25a-25c) : 

Wnk = KWk-qkW0K-i, (26a) 

^ - i = KWk-x+qk~X-M - (*+PWO) • 

(26b) 

(26c) 

Using appropriate values for W0 and Wx in (26a-26c), we may now derive the following rela-
tions for the polynomials V, u, and v: 

Vnk=Xyk-2qkXn_„ 

KM = Kvk+\ - qk(x+P)K-I, 
Vnk-, = ^k_l-qk-\x+p)X„_i, 

unk - Kuk - q K-i> 
u„k+i = Anuk+l-qk(x + p-y[q~)A„_l, 

Unk-\ ~ KUk-l ~ q K-l > 

(27a) 

(27b) 

(27c) 

(28a) 

(28b) 

(28c) 
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V * = V * - ? % H > (29a) 

v„k+1 = kvk+l-qk(x+P + y[q)k-i, (29b) 

V r ^ i + ^ V r (29c) 

It is clear from (23) that, if Vk |/l„_2, then Vk \Xn also. However, Vk \X2 since X2 = Vk. Hence, 
by induction, it follows that Vk \Xn when n is even. Thus, we see from (25a) that Vk |C4„ for even 
n, while Uk {U^ for all n. Further, we see from (27a) that Vk [V^ for odd n. Thus, we have the 
following results: 

U^Uto for all n; (30a) 

VtWto for even n; (30b) 

Kt|Kta for odd«. (30c) 

It Is evident that similar results hold for Fibonacci and Lucas polynomials, Pell and Pell-Lucas 
polynomials, etc., since these polynomials are special cases of Un and Vn. In particular, for the 
Fibonacci, Lucas, Pell, and Pell-Lucas numbers Fn,Ln,Pn, and Q„, we obtain from (30) the 
already known results: 

FkWkr,, P^P*, for all n; (31a) 

hWh,, Qk\Ph,> for even«; (31b) 

AIA»» Qk\P^ for odd ». (31c) 

5. SPECIAL CASE WHEN q = 1 

This corresponds to a modified version of the Morgan-Voyce polynomials, where x+2 is 
replaced by x + p in the difference equations. We shall denote the modified Morgan-Voyce poly-
nomials by B„{x), bn(x), Cn(x), and cn{x), where 

Sn(x) = Un+l(p,l;x), (32a) 

Cn(x) = Vn(p,Xx), (32b) 

bn{x) = un{p,\;x), (32c) 

?„(*) = v„(p,l;x). (32d) 

Hence, from (14a-14d), we have the "Simson" formulas: 

Bn+A-i-B2
n=-l; (33a) 

Q+1C„_, -Cl = (x + pf-4 = A = AfcAc; (33b) 

Kjn-i-^ = x + p-2 = Ab; (33c) 

$»&-! - c„2 = - ( * + /> + 2) = -Ac. (33d) 

Andre-Jeannin [3] has shown that B^k\x) and Cj;k\x), k = 0,1,2,..., where £ stands for the 
£* derivative, satisfy the following second-order differential equations: 
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BfXx): Ay" + (2k + 3)(x+p)yf + {(* +1)2 - (n + lf}y = 0, (34a) 

C£\x): Ay" + (2k + l)(x + p)y + (k2 - n2)y = 0, (34b) 

where 
A = (x+p)2-4. (34c) 

We will now derive similar results for b^k\x) and c}k\x). It is already known (see [6]) that 
bn(x) satisfies the differential equation 

x(x + 4)fy'(x) + 2(x + l)fy(x)-n(n + l)h„(x) = 0. (35) 

Changing x to x + p-2 and noting that bn(x) = hn(x + p-2), we find that equation (35) reduces 
to 

Abn"(x) + 2(x^p-l)b^(x)-n(n + l)bri(x) = 0, (36) 

where A is given by (34c). Differentiating (36) k times and using the Leibniz rule, we can show 
that b^(x) satisfies the differential equation 

bn
(k)(x): Ay" + 2{(k + l)(x+p) - \}y' + {k(k +1) -n(n + \)}y = 0. (37a) 

Similarly, we can show that c}k\x) satisfies the equation 

c£k\x): Ay" + 2{(k + l)(x+p) + l}y' + {k(k +1) -n(n + l)}y = 0. (37b) 
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