ON A CLASS OF GENERALIZED POLYNOMIALS

M. N. S. Swamy
Concordia University, Montreal, Quebec, H3G 1M8, Canada
(Submitted February 1996-Final Revision June 1996)

1. INTRODUCTION

In a series of articles [1]-[3], André-Jeannin has recently defined the polynomials $U_{n}(p, q ; x)$ and $V_{n}(p, q ; x)$ by the recurrence relations (1) and (2), and has studied some of the combinatorial properties of the coefficients of U_{n} and V_{n} as well as some of the differential properties of these polynomials.

$$
\begin{equation*}
U_{n}=(x+p) U_{n-1}-q U_{n-2}(n \geq 2), U_{0}=0, U_{1}=1 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{n}=(x+p) V_{n-1}-q V_{n-2}(n \geq 2), V_{0}=2, V_{1}=x+p . \tag{2}
\end{equation*}
$$

The parameters p and q as well as the variable x are real numbers. If α and β are defined by

$$
\begin{equation*}
\alpha+\beta=x+p, \alpha \beta=q \tag{3}
\end{equation*}
$$

then it is well known that [5]

$$
\begin{equation*}
U_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{\Delta}} \tag{4a}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{n}=\alpha^{n}+\beta^{n}, \tag{4b}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta=(x+p)^{2}-4 q . \tag{5}
\end{equation*}
$$

The purpose of this article is to introduce and study some of the properties of the generalized polynomial $W_{n}(p, q ; x)$ defined by

$$
\begin{equation*}
W_{n}=(x+p) W_{n-1}-q W_{n-2}(n \geq 2) \tag{6}
\end{equation*}
$$

where W_{0} and W_{1} are specified, as well as those of two other polynomials $u_{n}(p, q ; x)$ and $v_{n}(p, q ; x)$ that are very closely associated with U_{n} and V_{n}. We shall define these polynomials $u_{n}(p, q ; x)$ and $v_{n}(p, q ; x)$ to be

$$
\begin{equation*}
u_{n}=(x+p) u_{n-1}-q u_{n-2}(n \geq 2), u_{0}=1, u_{1}=x+p-\sqrt{q} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{n}=(x+p) v_{n-1}-q v_{n-2}(n \geq 2), v_{0}=1, v_{1}=x+p+\sqrt{q} . \tag{8}
\end{equation*}
$$

2. SOME BASIC RELATIONS AMONG U_{n}, V_{n}, u_{n} AND v_{n}

Using the well-known properties of $W_{n}(a, b, p, q)$ introduced by Horadam [5], we may derive a number of relations between U_{n} and V_{n}. However, we shall not do so except to list a few of the important ones that will be required for the remainder of this article. It is easy to show that W_{n} as defined by (6) may be evaluated using the relation [5],

$$
\begin{equation*}
W_{n}=W_{1} U_{n}-q W_{0} U_{n-1}(n \geq 1) . \tag{9}
\end{equation*}
$$

From (9) we can immediately derive the following relations:

$$
\begin{gather*}
V_{n}=U_{n+1}-q U_{n-1}, \tag{10}\\
u_{n}=U_{n+1}-\sqrt{q} U_{n}, \tag{11}\\
v_{n}=U_{n+1}+\sqrt{q} U_{n}, \tag{12}\\
V_{n}=u_{n}+\sqrt{q} u_{n-1}=v_{n}-\sqrt{q} v_{n-1} . \tag{13}
\end{gather*}
$$

From the results in [5], we may also derive the following "Simson" formulas:

$$
\begin{align*}
& U_{n+1} U_{n-1}-U_{n}^{2}=-q^{n-1} \tag{14a}\\
& V_{n+1} V_{n-1}-V_{n}^{2}=q^{n-1} \Delta \tag{14b}\\
& u_{n+1} u_{n-1}-u_{n}^{2}=q^{n-1 / 2} \Delta_{u} \tag{14c}\\
& v_{n+1} v_{n-1}-v_{n}^{2}=-q^{n-1 / 2} \Delta_{v} \tag{14d}
\end{align*}
$$

where

$$
\begin{gather*}
\Delta_{u}=x+p-2 \sqrt{q}, \tag{15a}\\
\Delta_{v}=x+p+2 \sqrt{q}, \tag{15b}\\
\Delta=\Delta_{u} \Delta_{v} . \tag{15c}
\end{gather*}
$$

From (14a-14d), we have the interesting result that

$$
\begin{equation*}
q\left(U_{n+1} U_{n-1}-U_{n}^{2}\right)\left(V_{n+1} V_{n-1}-V_{n}^{2}\right)=\left(u_{n+1} u_{n-1}-u_{n}^{2}\right)\left(v_{n+1} v_{n-1}-v_{n}^{2}\right)=-q^{2 n-1} \Delta \tag{16}
\end{equation*}
$$

3. ZEROS AND ORTHOGONALITY PROPERTY OF $\boldsymbol{U}_{n}, V_{n}, u_{n}$, AND v_{n}

André-Jeannin ([1], [2]) has shown that

$$
\begin{equation*}
U_{n}=q^{(n-1) / 2} \frac{\sin n \theta}{\sin \theta} \tag{17a}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{n}=2 q^{n / 2} \cos n \theta \tag{17b}
\end{equation*}
$$

where $\cos \theta=(x+p) / 2 \sqrt{q}$. Hence, from (11) and (17a), we get

$$
\begin{equation*}
u_{n}=q^{n / 2} \frac{\cos (2 n+1) \theta / 2}{\cos \theta / 2} . \tag{17c}
\end{equation*}
$$

Similarly, from (12) and (17a), we have

$$
\begin{equation*}
v_{n}=q^{n / 2} \frac{\sin (2 n+1) \theta / 2}{\sin \theta / 2} . \tag{17d}
\end{equation*}
$$

Hence, the zeros of U_{n}, V_{n}, u_{n}, and v_{n} are given by

$$
\begin{align*}
& U_{n}: x_{k}=-p+2 \sqrt{q} \cos \left(\frac{k}{n} \cdot \pi\right), \quad k=1,2, \ldots, n-1, \tag{18a}\\
& V_{n}: \quad x_{k}=-p+2 \sqrt{q} \cos \left(\frac{2 k-1}{2 n} \cdot \pi\right), \quad k=1,2, \ldots, n, \tag{18b}\\
& u_{n}: \quad x_{k}=-p+2 \sqrt{q} \cos \left(\frac{2 k-1}{2 n+1} \cdot \pi\right), \quad k=1,2, \ldots, n, \tag{18c}\\
& v_{n}: \quad x_{k}=-p+2 \sqrt{q} \cos \left(\frac{2 k}{2 n+1} \cdot \pi\right), \quad k=1,2, \ldots, n . \tag{18d}
\end{align*}
$$

Of these, André-Jeannin ([1], [2]) has given the zeros for U_{n} and V_{n}. It should be observed that, if $p=2$ and $q=1$, then the above results correspond to the already known results for the zeros of $B_{n}(x), C_{n}(x), b_{n}(x)$, and $c_{n}(x)$ (see [6], [7], [4]).

André-Jeannin ([1], [2]) has shown further that U_{n} and V_{n} are orthogonal over the interval $(-p-2 \sqrt{q},-p+2 \sqrt{q})$ with respect to the weight functions $w_{U}(x)=\sqrt{-\Delta}$ and $w_{V}(x)=1 / w_{U}(x)$, respectively. Using expressions (17c) and (17d), we may easily prove that u_{n} and v_{n} are also orthogonal over the same interval, but with respect to the weight functions $w_{u}(x)=\sqrt{-\Delta_{u} / \Delta_{v}}$ and $w_{v}(x)=1 / w_{u}(x)$, respectively.

4. Q-MATRIX AND FORMULAS FOR $W_{n k-1}, W_{n k}$ AND $W_{n k+1}$

If we define the generating matrix Q to be

$$
Q=\left[\begin{array}{cc}
x+p & -q \tag{19}\\
1 & 0
\end{array}\right]
$$

then it is straightforward to show by induction that

$$
P=Q^{k}=\left[\begin{array}{cc}
U_{k+1} & -q U_{k} \tag{20}\\
U_{k} & -q U_{k-1}
\end{array}\right] .
$$

The characteristic equation of P is given by

$$
\lambda^{2}-\left(U_{k+1}-q U_{k-1}\right) \lambda+q\left(U_{k}^{2}-U_{k+1} U_{k-1}\right)=0 .
$$

Using relations (10) and (14a), we may reduce the above equation to

$$
\lambda^{2}-V_{k} \lambda+q^{k}=0 .
$$

Hence, by the Cayley-Hamilton theorem, we have

$$
\begin{equation*}
P^{2}=V_{k} P-q^{k} I . \tag{21}
\end{equation*}
$$

Starting with (21), we may easily show by induction that

$$
\begin{equation*}
P^{n}(x)=\lambda_{n}(x) P(x)-q^{k} \lambda_{n-1}(x) I, \tag{22}
\end{equation*}
$$

where $\lambda_{n}(x)$ satisfies the recurrence relation

$$
\begin{equation*}
\lambda_{n}(x)=V_{k}(x) \lambda_{n-1}(x)-q^{k} \lambda_{n-2}(x)(n \geq 2), \lambda_{0}=0, \lambda_{1}=1 \tag{23}
\end{equation*}
$$

Hence, from (20) and (22), we have

$$
\begin{equation*}
Q^{n k}(x)=\lambda_{n}(x) Q^{k}(x)-q^{k} \lambda_{n-1}(x) I \tag{24}
\end{equation*}
$$

Therefore, we have

$$
\begin{gather*}
U_{n k}(x)=\lambda_{n}(x) U_{k}(x) \tag{25a}\\
U_{n k+1}(x)=\lambda_{n}(x) U_{k+1}(x)-q^{k} \lambda_{n-1}(x) \tag{25b}
\end{gather*}
$$

and

$$
\begin{equation*}
U_{n k-1}(x)=\lambda_{n}(x) U_{k-1}(x)+q^{k-1} \lambda_{n-1}(x) \tag{25c}
\end{equation*}
$$

We now derive similar results for the polynomial W, and thus for the polynomials V, u, and v. Consider the matrix

$$
R=\left[\begin{array}{cc}
W_{n k+1} & -q W_{n k} \\
W_{n k} & -q W_{n k-1}
\end{array}\right]
$$

Using relation (9), we may rewrite R as

$$
\begin{aligned}
R & =W_{1}\left[\begin{array}{cc}
U_{n k+1} & -q U_{n k} \\
U_{n k} & -q U_{n k-1}
\end{array}\right]-q W_{0}\left[\begin{array}{cc}
U_{n k} & -q U_{n k-1} \\
U_{n k-1} & -q U_{n k-2}
\end{array}\right] \\
& =W_{1} Q^{n k}-q W_{0} Q^{n k-1}, \operatorname{using}(20), \\
& =Q^{n k}\left(W_{1} I-q W_{0} Q^{-1}\right)
\end{aligned}
$$

Hence,

$$
\left[\begin{array}{cc}
W_{n k+1} & -q W_{n k} \\
W_{n k} & -q W_{n k-1}
\end{array}\right]=\left[\begin{array}{cc}
U_{n k+1} & -q U_{n k} \\
U_{n k} & -q U_{n k-1}
\end{array}\right]\left[\begin{array}{cc}
W_{1} & -q W_{0} \\
W_{0} & W_{1}-(x+p) W_{0}
\end{array}\right]
$$

From the above identity, we may derive the following relations after some manipulations using (9) and (25a-25c):

$$
\begin{gather*}
W_{n k}=\lambda_{n} W_{k}-q^{k} W_{0} \lambda_{n-1} \tag{26a}\\
W_{n k+1}=\lambda_{n} W_{k+1}-q^{k} W_{1} \lambda_{n-1} \tag{26b}\\
W_{n k-1}=\lambda_{n} W_{k-1}+q^{k-1} \lambda_{n-1}\left\{W_{1}-(x+p) W_{0}\right\} \tag{26c}
\end{gather*}
$$

Using appropriate values for W_{0} and W_{1} in (26a-26c), we may now derive the following relations for the polynomials V, u, and v :

$$
\begin{gather*}
V_{n k}=\lambda_{n} V_{k}-2 q^{k} \lambda_{n-1} \tag{27a}\\
V_{n k+1}=\lambda_{n} V_{k+1}-q^{k}(x+p) \lambda_{n-1} \tag{27b}\\
V_{n k-1}=\lambda_{n} V_{k-1}-q^{k-1}(x+p) \lambda_{n-1} \tag{27c}\\
u_{n k}=\lambda_{n} u_{k}-q^{k} \lambda_{n-1} \tag{28a}\\
u_{n k+1}=\lambda_{n} u_{k+1}-q^{k}(x+p-\sqrt{q}) \lambda_{n-1} \tag{28b}\\
u_{n k-1}=\lambda_{n} u_{k-1}-q^{k-1 / 2} \lambda_{n-1} \tag{28c}
\end{gather*}
$$

$$
\begin{gather*}
v_{n k}=\lambda_{n} v_{k}-q^{k} \lambda_{n-1}, \tag{29a}\\
v_{n k+1}=\lambda_{n} v_{k+1}-q^{k}(x+p+\sqrt{q}) \lambda_{n-1} \tag{29b}\\
v_{n k-1}=\lambda_{n} v_{k-1}+q^{k-1 / 2} \lambda_{n-1} . \tag{29c}
\end{gather*}
$$

It is clear from (23) that, if $V_{k} \mid \lambda_{n-2}$, then $V_{k} \mid \lambda_{n}$ also. However, $V_{k} \mid \lambda_{2}$ since $\lambda_{2}=V_{k}$. Hence, by induction, it follows that $V_{k} \mid \lambda_{n}$ when n is even. Thus, we see from (25a) that $V_{k} \mid U_{k n}$ for even n, while $U_{k} \mid U_{k n}$ for all n. Further, we see from (27a) that $V_{k} \mid V_{k n}$ for odd n. Thus, we have the following results:

$$
\begin{array}{ll}
U_{k} \mid U_{k n} & \text { for all } n \\
V_{k} \mid U_{k n} & \text { for even } n ; \\
V_{k} \mid V_{k n} & \text { for odd } n \tag{30c}
\end{array}
$$

It is evident that similar results hold for Fibonacci and Lucas polynomials, Pell and Pell-Lucas polynomials, etc., since these polynomials are special cases of U_{n} and V_{n}. In particular, for the Fibonacci, Lucas, Pell, and Pell-Lucas numbers F_{n}, L_{n}, P_{n}, and Q_{n}, we obtain from (30) the already known results:

$$
\begin{array}{lll}
F_{k} \mid F_{k n}, & P_{k} \mid P_{k n}, & \text { for all } n \\
L_{k} \mid F_{k n}, & Q_{k} \mid P_{k n}, & \text { for even } n \\
L_{k} \mid L_{k n}, & Q_{k} \mid P_{k n}, & \text { for odd } n \tag{31c}
\end{array}
$$

5. SPECIAL CASE WHEN $q=\mathbb{1}$

This corresponds to a modified version of the Morgan-Voyce polynomials, where $x+2$ is replaced by $x+p$ in the difference equations. We shall denote the modified Morgan-Voyce polynomials by $\widetilde{B}_{n}(x), \widetilde{b}_{n}(x), \widetilde{C}_{n}(x)$, and $\widetilde{c}_{n}(x)$, where

$$
\begin{align*}
& \widetilde{B}_{n}(x)=U_{n+1}(p, 1 ; x), \tag{32a}\\
& \widetilde{C}_{n}(x)=V_{n}(p, 1 ; x) \tag{32b}\\
& \widetilde{b}_{n}(x)=u_{n}(p, 1 ; x) \tag{32c}\\
& \widetilde{c}_{n}(x)=v_{n}(p, 1 ; x) \tag{32~d}
\end{align*}
$$

Hence, from (14a-14d), we have the "Simson" formulas:

$$
\begin{gather*}
\widetilde{B}_{n+1} \widetilde{B}_{n-1}-\widetilde{B}_{n}^{2}=-1 \tag{33a}\\
\widetilde{C}_{n+1} \widetilde{C}_{n-1}-\widetilde{C}_{n}^{2}=(x+p)^{2}-4=\Delta=\Delta_{b} \Delta_{c} \tag{33b}\\
\widetilde{b}_{n+1} \widetilde{b}_{n-1}-\widetilde{b}_{n}^{2}=x+p-2=\Delta_{b} \tag{33c}\\
\widetilde{c}_{n+1} \widetilde{c}_{n-1}-\widetilde{c}_{n}^{2}=-(x+p+2)=-\Delta_{c} \tag{33d}
\end{gather*}
$$

André-Jeannin [3] has shown that $\widetilde{B}_{n}^{(k)}(x)$ and $\widetilde{C}_{n}^{(k)}(x), k=0,1,2, \ldots$, where k stands for the $k^{\text {th }}$ derivative, satisfy the following second-order differential equations:

$$
\begin{array}{ll}
\widetilde{B}_{n}^{(k)}(x): & \Delta y^{\prime \prime}+(2 k+3)(x+p) y^{\prime}+\left\{(k+1)^{2}-(n+1)^{2}\right\} y=0 \\
\widetilde{C}_{n}^{(k)}(x): & \Delta y^{\prime \prime}+(2 k+1)(x+p) y^{\prime}+\left(k^{2}-n^{2}\right) y=0 \tag{34b}
\end{array}
$$

where

$$
\begin{equation*}
\Delta=(x+p)^{2}-4 \tag{34c}
\end{equation*}
$$

We will now derive similar results for $\widetilde{b}_{n}^{(k)}(x)$ and $\widetilde{c}_{n}^{(k)}(x)$. It is already known (see [6]) that $b_{n}(x)$ satisfies the differential equation

$$
\begin{equation*}
x(x+4) b_{n}^{\prime \prime}(x)+2(x+1) b_{n}^{\prime}(x)-n(n+1) b_{n}(x)=0 \tag{35}
\end{equation*}
$$

Changing x to $x+p-2$ and noting that $\tilde{b}_{n}(x)=b_{n}(x+p-2)$, we find that equation (35) reduces to

$$
\begin{equation*}
\Delta \widetilde{b}_{n}^{\prime \prime}(x)+2(x+p-1) \widetilde{b}_{n}^{\prime}(x)-n(n+1) \widetilde{b}_{n}(x)=0 \tag{36}
\end{equation*}
$$

where Δ is given by (34c). Differentiating (36) k times and using the Leibniz rule, we can show that $\widetilde{b}_{n}^{(k)}(x)$ satisfies the differential equation

$$
\begin{equation*}
\tilde{b}_{n}^{(k)}(x): \Delta y^{\prime \prime}+2\{(k+1)(x+p)-1\} y^{\prime}+\{k(k+1)-n(n+1)\} y=0 \tag{37a}
\end{equation*}
$$

Similarly, we can show that $\widetilde{c}_{n}^{(k)}(x)$ satisfies the equation

$$
\begin{equation*}
\widetilde{c}_{n}^{(k)}(x): \quad \Delta y^{\prime \prime}+2\{(k+1)(x+p)+1\} y^{\prime}+\{k(k+1)-n(n+1)\} y=0 \tag{37b}
\end{equation*}
$$

REFERENCES

1. R. André-Jeannin. "A Note on a General Class of Polynomials." The Fibonacci Quarterily 32.5 (1994):445-54.
2. R. André-Jeannin. "A Note on a General Class of Polynomials, Part II." The Fibonacci Quarterly 33.4 (1995):341-51.
3. R. André-Jeannin. "Differential Properties of a General Class of Polynomials." The Fibonacci Quarterly 33.5 (1995):453-57.
4. R. André-Jeannin. "A Generalization of the Morgan-Voyce Polynomials." The Fibonacci Quarterly 32.3 (1994):228-31.
5. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The Fibonacci Quarterly 3.3 (1965):161-76.
6. M. N. S. Swamy. "Further Properties of the Polynomials Defined by Morgan-Voyce." The Fibonacci Quarterly 6.2 (1968):166-75.
7. M. N. S. Swamy \& B. B. Bhattacharyya. "A Study of Recurrent Ladders Using the Polynomials Defined by Morgan-Voyce." I.E.E.E. Transactions on Circuit Theory 14.9 (1967): 260-64.
AMS Classification Numbers: 11B39, 33C25
