PROFESSOR LUCAS VISITS THE PUTNAM EXAMINATION

Leon C. Woodson

Department of Mathematics, Morgan State University, Baltimore, MD 21239-4001
(Submitted February 1996-Final Revision July 1990)
The following problem appeared on the 1995 William Lowell Putnam Mathematical Competition:

Evaluate

$$
\sqrt[8]{2207-\frac{1}{2207-\frac{1}{2207-\cdots}}}
$$

and express the answer in the form $(a+b \sqrt{c}) / d$, where a, b, c, and d are integers.
Readers of this journal might recognize that 2207 is the sixteenth Lucas number, L_{16}. Therefore, a more general problem is to evaluate

$$
\sqrt[n]{L_{2 n}-\frac{1}{L_{2 n}-\frac{1}{L_{2 n}-\cdots}}} .
$$

Let S denote this expression. Then $S^{n}=L_{2 n}-\left(1 / S^{n}\right)$, and therefore $S^{2 n}-L_{2 n} S^{n}+1=0$. It follows that

$$
S^{n}=\frac{L_{2 n}+\sqrt{L_{2 n}^{2}-4}}{2} .
$$

Now, using the Binet formula for the Lucas numbers, i.e., $L_{n}-\alpha^{n}+\beta^{n}, \alpha=(1+\sqrt{5}) / 2$, and $\beta=(1+\sqrt{5}) / 2$, we have

$$
S^{n}=\frac{\alpha^{2 n}+\beta^{2 n}+\sqrt{\left(\alpha^{2 n}+\beta^{2 n}\right)^{2}-4}}{2}=\frac{\alpha^{2 n}+\beta^{2 n}+\sqrt{\left(\alpha^{2 n}-\beta^{2 n}\right)^{2}}}{2}=\alpha^{2 n} .
$$

It follows that $S=\alpha^{2}=(3+\sqrt{5}) / 2$ (independent of n).
This technique can be used to simplify a variety of expressions of this general form. A more natural solution to the original problem is to set T, say, equal to the expression and note, as above, that

$$
T^{16}-2207 T^{8}+1=0 .
$$

This can be written in the form $T^{16}+2 T^{8}+1=47^{2} T^{8}$. Then, taking square roots (T is positive), we have $T^{8}+1=47 T$. Repeating this gives $T^{4}+1=7 T^{2}$ and $T^{2}+1=3 T$. Solving the latter equation yields the solution $T=(3+\sqrt{5}) / 2$.
AMS Classification Numbers: 11A55, 11B39

