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Let s(k) denote the sum of the base 10 digits of k E N . For natural x > 2 and arbitrary fixed 
exponent m eN, it will be shown that 

x-l i x-l / Q \m 

i-5>(*r=(jigxj +o((ig*r-1). 
Here, "lg" denotes the base 10 log function. It is obvious that this formula can be generalized on 
arbitraryp-adic systems. The case m-\ has been treated in [1], m = 2 in [2]; there the general 
case is exhibited as an open problem. The proof given now is based on induction. 

I wish to thank Harald Scheid, University of Wuppertal, Germany, who drew my attention to 
certain unsolved arithmetical problems, the above among them. 

1. THE ASSUMPTION 

Let 4c f°r x = 2,3,... be the arithmetic function 

4(/«) = | ;5(*)m, «ieN0(= {0,1,2,...}). 
fc=0 

I denote the above assertion in the following manner, 

Ax(i) = x\^lgxj +di(x)-x(lgxy-\ x>2 , (1) 

with certain bounded functions df(x), i.e., 

K(x) |<4forallx, (2) 

and assume that it is valid for / = 1, ...,/w-l. The validity for / = 1 is guaranteed in [1] and the 
validity for i = m will be deduced now in several steps. 

2. A REDUCTION FORMULA FOR AWx 

The binomial product B*C of two arithmetical functions is defined by 

B*C(m) = fj(f\B(kyC(m-k). 

First, I will show that 
4o* = Ao * 4c- (3) 

x-l 9 * - l 9 x-l 9 m / \ 

Aox("»)=Z z*o°*+om =Z iwo+i r= Z Z Z n W r ' / ' 
&=0 /=0 &=0 /=0 fc=0 /=0 ;=0 ^J ' 
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=1 l(«*r{7)|>')=l I^r{7)4oO)=z[(7)4oO)Z^)'-

3. ESTIMATION OF THE REMAINDER 

Let x have the decomposition lOy + z with z<10. Suppose i^. = 4c - Al0y. In the case 
z = 0 we have i?,. = 0, otherwise 

If w +1 denotes the number of digits of x, then 

i?,(w)<z-((w + l)-9)m<9w+1-(« + i r . 

Let (an...a0) be the decimal representation of x and xk-{an...ak) (especially x0 - x, xn=an\ 
then, in particular, 

4. A DECOMPOSITION OF 4 ( m ) 

One can verify immediately that 

(4) 

fc=i 

^Ky^+Ii^Uo^^-io^+Iio*^, 
J f c = l k=0 

k=l\ /=1 
4(") = i o ^ > ) + I ho*"1! 7 40(04,(^-0kZi^CiH) 

v „ ' j = 1 
7)^fiX-, 

V »̂ . 

A:=0 

H-l 

+ Siok^('») 
&=0 

JF 

The expressions U, V, and FT shall be treated now one after another. 

5. ESTIMATION OF V AND V 
(4) 

[/ = 10"A, (m) = 1 0 X (m) < 10" -9m+1 and, since 10" < x < 10"+1, we have U = 0(x). Fur-
thermore, 

n-\ (4) w-1 
F = X 1 0 ^ ( w ) - 9w+1ZlOfc(w-* + l)w. 

fc=0 fc=0 
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Since the power series 2^ kmzh has radius of convergence 1, it is particularly convergent for 
z- 1/10; hence, 

n+l 

k 
Thus, V=0(x). 

n n+l / i \k 
]T\0k(n-k + l)m = 10"+lY,km [-:] =0(x). (5) 
k=0 k=l V 1 0 ^ 

6. DECOMPOSITION AND ESTIMATION OF THE Wi 

With respect to the assumption under induction, we obtain, for / < m-1, 

Wi=±lOkAXt(i) = £lo4xAgxk)+dtxk)-xk-(lgxky-i 

= \^]i^xk(igxky +£di(xk)-iokxk(igxky-\ 
Gt G; 

Let yk = (ak ...<%). Then 10*xk = (an...ak0...0) = x-(ak_l...a0) = x-yk_l9 so we have 
v v ,——J 

n+l digits 

G,=iix-y^iigxj=*icg**y -2>*-i0g**y. 
k=\ k=\ k=l 

The two sums herein shall now be estimated separately: 

a) We have («-£) ' = (lglO""*)' < ( l g x j <(lgl0"-*+1)' = (n-k + Vf; hence, 

£(n-ky <Y,(lgxky <£(n-k + iy =n< +f,(ri-ky. 
k=l k h=\ k=l 

Since 
n 

I< 
k=l 

we see that, for arbitrary / GN, 

b) 2>*-,(ig%)' ^Iio^igio"-^1)1=^i&(n-k+iy(^o(x). 
k=l k k 

n-ky 

n 

X(ig* 
k=l 

k=l 

n-l 

&=1 

•»'=? 

= 77T+0< 

-7 + 1 

^T+o(«'). 

Putting the two parts together, we have 
ni+l 

Gt=x~+0(x-rt)9 i'+l 
particularly with respect to (2): \G*\< 4Q-i =0(x-ni); therefore, 

Now it is easily seen that 
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And, finally, 

4(wi) = f | j X-W,,f+0(X-/!W-1). 

From this, the Initial assertion is deduced immediately. 

Often a solved problem procreates a new problem. Here is an open question: Does the given 
asymptotic estimation hold even for arbitrary real m>\l The reader is invited to prove or dis-
prove this result. 
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