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PROBLEMS PROPOSED IN THIS ISSUE 

H-539 Proposed by H.-J. Seiffert, Bedim, Germany 
Let 

where 

Hm(p) = i,BU,p\m£N,p>0, 

**»=S=j:'rta-<r'* T(x+y) 

denotes the Betafunction. Show that for all positive reals/? and all positive integers n, 

fJ{-\f-l[^H2kip) = A"+^B{n + p,n + p-\) + - ^ - v (1) 

From (1), deduce the identities 

irr'M2!>^:?) (2) 
and 

/(2k\ In z<-»-«'[Z / ? = # r <3> 
H-540 Proposed by Paul S. Bruckman9 Highwood, IL 

Consider the sequence U = {u(n)}*=v where u(ri) = [na], its characteristic function Su(n), 
and its counting function nv{n) = T"k=iSu(k), representing the number of elements of U that are 
<n. Prove the following relationships: 

(a) du(n) = u(n +1) -u(n) - 1 , n > 1; 
(b) *u(Fn) = Fn_l9n>\. 

H-541 Proposed by Stanley Rabimowitz? Westford, MA 

The simple continued fraction expansion for F^ I Ff2 is 
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11 + -
11 + 

375131 + 
1 + -

1 + -
1 + -

1 - f • 

1 + -
1 + -

1 + 
i + '-

i + ^ 
2 + -i 

9 + 1 
11 

This can be written more compactly using the notation [11,11,375131,1,1,1,1,1,1,1,1,1,2,9,11]. To 
be even more concise, we can write this as [ll2,375131,19,2,9,11], where the superscript denotes 
the number of consecutive occurrences of the associated number in the list. 

If n > 0, prove that the simple continued fraction expansion for (Fl0n+31 Fl0n+2)5 is 

[112", x, l10"-1,2, 9,112^-1], 

where x is an integer and find x. 

SOLUTIONS 
A Fibo Matrix? 

H-522 Proposed by N. Gauthier, Royal Military College, Kingston, Ontario, Canada 
(Vol 35, no. 1, February 1997) 

Let A and B be the following 2x2 matrices: 

^ = (i o) and B = {o i 
Show that, for m > 1, 

m-\ 

j^2"Ar{Ar +B2ny1 = c2mC2m -(A + B), 

where 
cm = m/(Fm+1+Fm_1-2) and Cm = (F"^~l 

V m F^-ir 
Fm is the rrft* Fibonacci number. 
Solution by Paul S. Bruckman, Highwood, IL 

We begin by noting that the matrix B is the identity matrix / (as is any power of B). Let Sm 

denote the sum in the left member of the statement of the problem; let W(n)-nAn{An +/)"1. 
Note that 

Now 

cm=m(Lm-2T\ c2 = 2, Q=( | Q A+B^ J 
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a well-known result. Then \A" + I\ = Fn„Fn_x + Fn+l + F„_, +1 - (F„)2 = Ln +1 + (-1)" = Ln + 2en, 
where en is the characteristic function of the even integers. Then 

W(n) = n(Ln+2enyiFp F" 

{" n) I F„ F„_1 + (-l)» 

and 
^ Y ^ - i + l ~Fn 

K Fn+x + \ 

after simplification. In particular, 
'0 1 

Note that 

cfi,-« + ̂ % J)-(? }) = (» _>,) = *; 
thus, the statement of the problem is valid for m - 1. 

Let N denote the set of positive integers m for which the statement of the problem is valid. 
As we have just shown, leN. Suppose that meN. Then, letting u - 2m and using the inductive 
hypothesis, 

Sm+l = Sm + W(u) = cuCu-{A+I) + u(Lu+2r^£l
 p^+h 

=u(Lu-2y[F^1
 Fu

F
:_^u{Lu+2r[F^ Fu

F;+iy(A+D 

= u{(Lu)2- 4}-f (L« + 2){F"+1 ~1} + (L» ~ 2){F"+1 + 1 } 

- 0 4 + / ) 

=2^-2)14F>;r2 iI:-2)-^+ / ) 

= ^ ( F X _ 1 F 2 „ F T-I) _ ( " I + / ) = C 2 " C 2 "" ( ^ + / ) -
Comparison with the expression given in the statement of the problem shows, therefore, that 

rneN implies (m +1) e N. This is the required inductive step, and the desired result is proven. 

Also solved by H. Kappus, H.-J. Seiffert, and the proposer. 

2LUFU 
( 4 + 2){Fk.1-l} + (4-2){FM.1 + l} 
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Enter! 

H-523 Proposed by Paul S. Bruckman, Highwood, IL 
(Vol. 35, no. 1, February 1997) 

Let Z(ri) denote the "Fibonacci entry-point" of n, i.e., Z(n) is the smallest positive integer m 
such that n\Fm. Given any odd prime/?, let q = j(p-l)', for any integer s, define gp(s) as 
follows: 

^ / 

Prove the following assertion: 

Z{p2) = Z(p) iff gp(l) - gp(5) (modp). (*) 

Solution by H.-J. Seiffert, Berlin, Germany 
We need the following results. 

Proposition 1: For all positive integers n, it holds that: 

[nil]/ x 

Proof: The first equation can be found on page 4 in [1] and the second on page 69 in [3]. 

Proposition 2: lip is any odd prime, then Z(p2) = Z(/?) if and only if Lp = 1 (mod p2). 

Proof: Since Z(25) = 25 * 5 = Z(5) and Z5 = l l # l (mod 25), we do suppose that p*5. 
Then (see [2], p. 386, Lemma 5), Z(p2) = Z(p) if and only if Fp_e = 0 (mod p2\ where e = (5\p) 
denotes Legendre's symbol, and (see [4], p. 367, eq. (2.10)) Fp_e = 2e(Fp -e) (mod/?2). Our 
claim now easily follows from p*5, e e {-1, +1}, and the equations Lp = 2Fp+l -Fp=Fp+ 2Fp_v 

Q.E.D. 

Lemma: If/? is a prime, then 

(j^(-l);+1f (mod/*), j = \2,...,p-\. 

Proof: For j = 1,2,...,/?-1, we have 

This proves this well-known congruence. Q.E.D. 

Let/? be an odd prime. From Proposition 1(a) and the lemma, modulo p2 we obtain 

2^=i + i ( 2^)" i - f^( i ) (m°d^2) 
or, equivalently, 
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pgp(l) = 2 - 2 " (modp2). (1) 

Similarly, using Proposition 1(b) and the above lemma, modulo p2 we find 

giving 
pgp(5)^2-2?Lp (modp2). (2) 

Hence, by (1) and (2), we have gp{\) = gp(S) (modp) if and only if Lp = 1 (mod p2). The desired 
equivalence relation now follows from Proposition 2. 

Remark: In 1960, D. D. Wall posed the problem of whether there exists a prime p such that 
p2\F e. It is still not known whether such a prime exists although it is known that it must 
exceed 109 (see [4], p. 366). In [2] (p. 384, Theorem 4), it was proved that if/? is an odd prime 
such that Fermat's last theorem fails for the exponent p in the first case, then p2 \Fp_e. Con-
versely, it seems that Andrew Wiles' proof of Fermat's last theorem does not imply that such 
primes cannot exist. 

References 
1. I S . Gradsteyn & I. M. Ryzhik. Table of Integrals, Series, and Products. 5th ed. New 

York:: Academic Press, 1994. 
2. Z. H. Sun & Z.-W. Sun. "Fibonacci Numbers and Fermat's Last Theorem." Acta Arith. 60 

(1992):371-88. 
3. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section. New York: Halsted, 1989. 
4. H. C. Williams. "ANote on the Fibonacci Quotient Fp_e/p" Can. Math. Bull. 25 (1982): 

366-70. 

Also solved by the proposer. 
Z(p) ed di do da 

H-524 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol 35, no. 1, February 1997) 

Let pht & prime with p = \ or 9 (mod 20). It is known that a: = (p-1)/Z(p) is an even 
integer, where Z(p) denotes the entry-point in the Fibonacci sequence [1]. Let q\-{p-\)l2. 
Show thai 
(1) ( - l ) a / 2 ss (~5yn (mod p) ifp ES 1 (mod 20), 
(2) ( - l ) a / 2 = -{-S)ql2 (modp) ifp s 9 (mod 20). 

Reference 
1. P. S. Bruckman. Problem H-515. The Fibonacci Quarterly 34,4 (1996):379. 

Solution by Paul S. Bruckman, Highwood, IL 
We will make use of the following easily verified (or well-known) results: 

(a) p\FrmdFp-e = FrLr+eiff(^)=l; 

(b) p\LrmdFp-e = Fr+eL/iff{f) = -l; 

(c) e = (-l)'(f); 
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(d) 5F2 - Lr+eLr_e = 5Fr+eFr_e -I?r = (-1)'; 
(e) for all positive integers m and n > 1, Z{m)\n iff m\Fn; 
(f) Z(p)\(p-e); 
(g) Z(p*) = pZ(p) or Z(p). 

(A) Suppose eA-B = C (mod/?). Then ^/? -Bp = Cp (mod/?2) 

^ e - Z ^ ^ f f - j a - C - l ) * ) - ^ * - 0 (mod/,2). 

Now, if 1 <£</?, 

Thus, 

<.2^-f(-i^.i(i-(-i)*).^.5i<t- ,> 

-54l(f)i(l-(-l)4)-5"fc(mod^) 

=5>e-2^5~*[(l+V5y-(l-V5y] (mod/?2)=>Fp = e (mod/?2). 

From (a) and (b), we see that p\Fr and />2|FrZ,r+e if (=f) = 1, or p\Lr and p2\Fr+eLr if 
( f ) = - 1 . From (d) and (e), gcd(Fr, Lr+e) = gcd(Fr+e, 4 ) = 1. Then ? \Fr if (-f) = 1, or p2 |Zr if 
(=f) = - 1 . In any event, p2\F2r = FrLr. Then, from (e), Z(p2)\2r -p-e. Since p\{p-e), it 
follows from (f) and (g) that Z(p2) = Z<». 

(B) The steps in (A) are reversible. Thus, 

Z(pi) = Z(p)=>pi\F2r^pi\(Fp-e)^eAp-Bp 

= Cp (modp2)=>eA-B = C (modp). Q.E.D. 

Also solved by the proposer. 
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