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1. INTRODUCTION 

We consider the second-order recurring relation 
W,=a,Wx=b,Wn=PWn^-QWn_2 («>2), (1.1) 

where a, b, P, and Q are integers, with P > 0, Q ̂  0, and A = P2 -4Q > 0. Particular cases of 
{Wn} are the sequences {Un} = {U„(P,Q)} of Fibonacci and {V„} = {Vn(P, Q)} of Lucas defined 
by U0 = 0, Ux = 1 and VQ = 2,Vl = P, respectively. It is well known that 

u"=£^=f and V"=a"+P"> <L2) 
where 

P+VA . n P-VA n _ 
« = — j — ^ — 2 — ' ^ * 

so that a + fi = P mdaj3 = Q. 
Since P > 0, notice that a > 1, a > |/?|, so that U„ > 0 (n > 1), F„ > 0 (n > 0). 
Recently, several papers ([2], [3], and [6]) have been devoted to the study of the infinite sum 

Su(x) = Su(x;P,Q) = fd^. (1.4) 

The main known results can be summarized as follows. 

Theorem 1: 
(i) If Q = - 1 , the rational values of x = r I s for which Su(x) is an integer are given by 

* = % ± L ( » = 1,2,...), (1.5) 

and the corresponding value of Sa is given by 

Su(x) = U2„U2n+l. (1.6) 

fii) If g = 1 and P > 3, the rational values of x = r I s for which ^ ( x ) is an integer are given by 

(« = 1,2,...), (1.7) C - i 

and the corresponding value of Sn is given by 

SuW^UJU^. (1.8) 

The aim of this paper is to extend the above result to the infinite sum 

Sv(x) = Sv(x;P,Q) = fj ^ - , where Q = ±1. (1.9) 
«=o x 
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Using the Binet forms (1.2) and the geometric series formula, we get the closed-form expres-
sion 

Remark 1.1: We have assumed that P > 0. Actually, it is well known that 

Un(-P,Q) = (-irXU„(P,Q) and Vn(-P,Q) = (-1)"V„(P,Q)-
From this, we get 

Sute -P, Q) = Sui-x; P, 0 and Sv(x; -P, Q) = Sv(-x; P, Q). 

Thus, the case P < 0 cannot give really new results. 

Remark 1.2: It is clear by (1.9) that Sv(x) >V0=2 for x > a, since Vn > 0 for every n > 0. 

In what follows, we shall make use of the well-known identities: 
V„ + PUn = 2Un+1; (1.11) 
AUn+PVn = 2Vn+l; (1.12) 
U2n = UnV„; (1.13) 
V2n + 2Q" = V„2; (1.14) 
V2„-2Q" = AUl, (1.15) 
V„2-AUt = 4Q"; (1.16) 
^^^U^-QUl (1.17) 

All of these identities can be proved by using the Binet forms (1.2). 

2» MAIN RESULTS 

Theorem 2: If Q = ±l, there do not exist negative rational values of x such that Sv(x) is an 
integer, except when Q--1 and P - 1. In this case, the only solution is given by x = -2, with 
Sv(-2) = 2. 

Remark 2.1: Since Vn(l, -1) = L„ (the /1th Lucas number), we see by Theorem 2 that 

Z 1 Z ^ = 2. (2.1) 

Theorem 3: If (g = - 1 , the positive rational values of x for which Sv(x) is integral are given by 

x = % ^ ( / i = l,2,...) (2.2) 

and 

x = ̂ t 2 . ( n = 0,l,...). (2.3) 

The corresponding values of Sv(x) are given by 
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Sv(U2„+l/U2„) = U2n+lV2„ (2.4) 

and 
Sv(V2n+2/V2n+l) = U2„+lV2„+2. (2.5) 

Theorem 4: If Q = 1 and P > 3, the positive rational values of x for which Sv(x) is integral are 
given by 

* = % * ( / ! = 1,2,...) (2.6) 

and 
x = ̂ ( * = 0,l,...), (2.7) 

where X„-C/„+1 + C/„. 
The corresponding values of Sv(x) are given by 

Sv(Un+l/U„) = Un+1V„ (2.8) 
and 

5K(Xn+1/X„) = Jr„+1(C/„+1-t/„). (2.9) 

3. PROOF OF THEOREM 2 

Consider the function (j> defined by 

<Kx)= X
2

{2X~P\, x*amdx*0. (3.1) 
x1 - Px + Q 

From (1.10) it is clear that 0(x) = Sv(x) when |x |>a, and one can see immediately that 

lim <f>{x) = 2 and </>(-a) = l + ̂ >\. (3.2) 
X-»-oo IP 

Assuming first that Q- 1, we see that $ is decreasing on ]-<»,/?] and thus on ]-oo, - a ] 
(recall that -a </?, since P > 0). By (3.2), it is clear that there does not exist a number x < -a 
with $(x) an integer. 

Assuming now that Q = - 1 , we see that <j> is decreasing on ] - QO, y] with y = ~2^ , and it is 
not hard to prove that <f>{y) = 1 + -̂ L > 1. If P > 2, one verifies that -a < y, and the same conclu-
sion follows. On the other hand, if P = 1, we have y = -2- J5 = -4.2..., ${y) = 1 + -4- = 1.8..., 
- a = -1.6..., ^(-a) = ! + —- = 2.1.., and that </> is increasing on [y, - a]. Thus, 2 is the only inte-
ger value of <fi within this interval, and it is immediate that ^(-1) = 2 This completes the proof. 

To prove Theorems 3 and 4, we need some further mathematical tools. These will be dis-
cussed in Sections 4 and 6. 

4. A PELL EQUATION 

In this section we shall suppose that Q = ±1. Let x = r/s>a, where r and s are positive 
integers with gcd(r, s) = l. We see by (1.10) that 

Sv(rls) = rk, (4.1) 
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where 
, _ (2r-Ps) ,A _ 

r2-PrS+Qs2' ( 4 -2 ) 

It is clear that k > 0, since Sv(r I s) > 0 by Remark 1.2. We also see that gcd (r, r2 - Prs + 
Qs2) = 1, since Q = ±1 and gcd (r, J ) = 1. From this fact, we see that ^ ( r / s) is an integer if and 
only if 

y 2r-/fr = 4(2r-Pj) 

is an integer. Putting z = 2r- Ps for notational convenience, we get the second-degree equation 
in the unknown z 

4z 
z2-hs2 

which can be written as 
= * , (4.3) 

kz2-4z-kAs1 = 0. (4.4) 

Notice that z > s^> 0, since r Is>a = -f-+^-. The only positive root of (4.4) is given by 

*=nr̂ . (45) 

where d = 4 + A(fc)2. For z to be an integer, the inequality 

4 + A ( f a ) 2 = y 0 = 0,1,...) (4.6) 

must hold. Observing that A = P2 ± 4 is never a square, it follows by (1.16) and the theory of Pell 
equation (see, e.g., [5] and [7]) that the solutions of (4.6) in the unknowny and ks are given by 

y = V2n, ks = U2n(n>0), if Q = -l, (4.7) 

and by 
y = Vn,ks = Uri (n>0\ ifQ = l. (4.8) 

In our problem we can suppose that n > 1, since ks > 0, and we have to consider the two cases 
(Q = 1 and Q = -l), separately. 

5. PROOF OF THEOREM 3 

In this section we suppose that Q = -\. Assuming that Sv{r Is) is an integer, we see by (4.7) 
that ks = U2„ mdjd=y = V2„ for n > 1. It follows by (4.5), (1.13), (1.14), and (1.15) that 

z = ,2 + v ^ 5 2 + ^ ( 5 J ) 
ks U2n 

V2 V $yf~- = $jy-, n > 2 even, 

AU2„ AUn , . 
s r " = s———, n odd. 

U2n Vn 
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On the other hand, recalling that z = 2r-Ps and using (1.11) and (1.12), we see that 

r = 
z + Ps 

u. «+l 

u. 
^U„ + PV„_Jn+x 

2V„ ~S V„ 

n>2 even, 

n odd. 
(5.3) 

Finally, we get 

x=rIs-

U. n+l 

V vn+\ 
v„ 

n even and positive, 

n odd, 
[cf. (2.2) and (2.3)]. 

To prove the second part of the theorem, notice first that -ff1 > a (n>2 even) and -fr- > a 
(n odd), since Q = -l. From (4.1), we see that 

Sv(r/s) = rk = ^ks. (5.4) 

Putting r Is = U„+lIUn (n>2 even) in (5.4) and using (4.7) and (1.13), we get 

Sv(Un+l/Un) = ^U2n = Un+lVn (n>2 even) [cf. (2.4)]. 
n 

Now, putting r I s - Vn+l I Vn in odd) in (5.4), we obtain 

Sy(Vn+JV„)^U2n^Vn+lUn («odd) [cf.(2.5)]. 

This completes the proof of Theorem 3. For the proof of Theorem 4, we need some results 
on the Fibonacci and Lucas numbers with real subscripts. These will be discussed in Section 6. 

6. FIBONACCI AND LUCAS FUNCTIONS 

Several definitions of Fibonacci and Lucas numbers with real subscripts are available in the 
literature (see, e.g., [1] and [4]) for the case in which P - -Q = 1. 

Let us suppose here that Q = 1 and P > 3. Thus, a and /? as defined by (1.3) are positive 
quantities and we can define, for every real number x, the real quantities 

ax- ftx 
U=-—£- and Vx = ax + fix. 

x a-p x 

Using (6.1), the following identities can readily be found: 
UX = PUX_X-UX_2 and V^PV^-V^, 

Ux ~ ^xi'Fxii -> 

K + 2 = V?n, 
Vx + PUx = 2Ux+l, 

Ux+y + Ux_y - UxVy, for every x and every y. 

(6.1) 

(6.2) 
(6.3) 
(6.4) 
(6.5) 
(6.6) 
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The sequences Yn = Un+l/2 will be of particular interest for our purposes. Putting x = n +1 / 2 
and j ; = l /2 in (6.6), we get 

^ = ^ 2 X (6.7) 
where X„ = Un+l + U„, as specified in Theorem 4. 

7. PROOF OF THEOREM 4 

In this section we suppose that Q = 1 and P > 3. Assuming by (4.8) that ks = {/„ and V^ = 
y = V„ (n> 1), it follows by (6.3) and (6.4) that 

2 + Jd_„2+Vn_Jn
2
/2_„V„/2 

Now by (6.5) we get 

2 " 2f/ " // ' K } 

Hence, letting n = 2m and n = 2m + lin (6.9) and using (6.7) in the latter case, one obtains 
17/ 
1 ?±k m>0. 

x~rIs= ym [cf. (2.6) and (2.7)]. 

V X 

As for the second part of the theorem, we see that Um+l IUm> a (m>0) and Xm+l I Xm> a 
(rn>0\ since Q = 1. Putting r Is = Um+l IUm in (5.4) and using (4.8) (with n = 2m), we get 

Sv(Um+l/UJ = ̂ U2m = Um+lVm [cf. (2.8)]. 

Finally, from (4.8) (with n = 2w +1) and (1.17), we get 

X X 
^v(^w+l / ^m) ~ J + ^2w+l ~ ~l~r~(Um+\ ~ Um) Am Am 

= Xn+l(Um+l-Um) [cf. (2.9)], 

and the proof is complete. 

Concluding Remark: From Theorems 3 and 4, one can study the integrity of the infinite sum 

«=0 X 

This investigation might be the aim of a future work. 
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