ON A GENERALIZATION OF A CLASS OF POLYNOMIALS

Gospava B. Djordjevic

Department of Mathematics, University of Nis, 16000 Leskovac, Yugoslavia (Submitted February 1996-Final Revision August 1997)

1. INTRODUCTION

In [1], R. André-Jeannin considered a class of polynomials $U_n(p,q;x)$ defined by

$$U_n(p,q;x) = (x+p)U_{n-1}(p,q;x) - qU_{n-2}(p,q;x), \quad n > 1,$$

with initial values $U_0(p, q; x) = 0$ and $U_1(p, q; x) = 1$.

Particular cases of $U_n(p,q;x)$ are: the well-known Fibonacci polynomials $F_n(x)$; the Pell polynomials $P_n(x)$ (see [4]); the Fermat polynomials of the first kind $\phi(x)$ (see [5], [3]); and the Morgan-Voyce polynomials of the second kind $B_n(x)$ (see [2]).

In this paper we shall consider the polynomials $\phi_n(p,q;x)$ defined by

$$\phi_n(p,q;x) = (x+p)\phi_{n-1}(p,q;x) - q\phi_{n-3}(p,q;x), \qquad (1.0)$$

with initial values $\phi_{-1}(p,q,x) = \phi_0(p,q,x) = 0$ and $\phi_1(p,q,x) = 1$. The parameters p and q are arbitrary real numbers, $q \neq 0$.

Let us denote by α , β , and γ the complex numbers, so that they satisfy

$$\alpha + \beta + \gamma = p, \quad \alpha\beta + \alpha\gamma + \beta\gamma = 0, \quad \alpha\beta\gamma = -q. \tag{1.1}$$

The first few members of the sequence $\{\phi_n(p,q;x)\}$ are:

$$\phi_2(p,q;x) = p + x; \quad \phi_3(p,q;x) = p^2 + 2px + x^2; \quad \phi_4(p,q;x) = p^3 - q + 3p^2x + 3px^2 + x^3.$$

By induction on *n*, we can say that there is a sequence $\{c_{n,k}(p,q)\}_{n\geq 0, k\geq 0}$ of numbers, so that it holds

$$\phi_{n+1}(p,q;x) = \sum_{k\geq 0} c_{n,k}(p,q)x^k, \qquad (1.2)$$

where $c_{n,k}(p,q) = 0$ for k > n and $c_{n,n}(p,q) = 1$. Therefore, if we set $c_{-1,k}(p,q) = c_{-2,k}(p,q) = 0$, $k \ge 0$, then we have

$$\phi_{-1}(p,q;x) = \sum_{k\geq 0} c_{-2,k}(p,q)x^k$$
 and $\phi_0(p,q;x) = \sum_{k\geq 0} c_{-1,k}(p,q)x^k$

Later on, we consider some other interesting sequences of numbers, define the polynomials $\phi_n^1(p,q;x)$ and $\phi_n^2(p,q;x)$, which are rising diagonal polynomials of $\phi_n(p,q;x)$ and $\phi_n^1(p,q;x)$, respectively, and finally, consider the generalized polynomials $\phi_n^m(x)$.

2. DETERMINATION OF THE COEFFICIENTS $c_{n,k}(p,q)$

The main purpose of this section is to determine the coefficients $c_{n,k}(p,q)$. First, for $n \ge 1$, $k \ge 1$, from (1.0), (1.1), and (1.2), we obtain

$$c_{n,k}(p,q) = c_{n-1,k-1}(p,q) + pc_{n-1,k}(p,q) - qc_{n-3,k}(p,q) = c_{n-1,k-1}(p,q) + (\alpha + \beta)c_{n-1,k}(p,q) + \gamma(c_{n-1,k}(p,q) - \gamma(\alpha + \beta)c_{n-3,k}(p,q)).$$
(2.0)

[MAY

Therefore, we shall prove the following lemma.

Lemma 2.1: For every $k \ge 0$, we have

$$(1 - pt + qt^3)^{-(k+1)} = \sum_{n \ge 0} d_{n,k} t^n, \qquad (2.1)$$

where

$$d_{n,k} = \sum_{i+j+s=n} {\binom{k+i}{k}} {\binom{k+j}{k}} {\binom{k+s}{k}} \alpha^i \beta^j \gamma^s.$$
(2.2)

Proof: From (2.1), using (1.1), we get

$$(1 - pt + qt^3)^{-(k+1)} = (1 - \alpha t)^{-(k+1)} (1 - \beta t)^{-(k+1)} (1 - \gamma t)^{-(k+1)}$$
$$= \sum_{n \ge 0} \sum_{i+j+s=n} \binom{k+i}{k} \binom{k+j}{k} \binom{k+j}{k} \alpha^i \beta^j \gamma^s t^n.$$

Statement (2.2) follows immediately from the last equality. \Box

Now we shall prove the following theorem.

Theorem 2.1: The coefficients $c_{n,k}(p,q)$ are given by

$$c_{n,k} = \sum_{i+j+s=n-k} \binom{k+i}{k} \binom{k+j}{k} \binom{k+s}{k} \alpha^{i} \beta^{j} \gamma^{s}.$$
 (2.3)

Proof: First, let us define the generating function of the sequence $\phi_n(p,q;x)$ by

$$F(x,t) = \sum_{n \ge 0} \phi_{n+1}(p,q;x) t^n.$$
(2.4)

Then, using (1.0), we find

$$F(x,t) = (1 - (p+x)t + qt^3)^{-1}.$$
(2.5)

Now, from (2.5) and (2.4), we deduce that

$$\frac{\partial^k F(x,t)}{\partial x^k} = \frac{k!t^k}{(1-(x+p)t+qt^3)^{k+1}} = \sum_{n\geq 0} \phi_{n+1+k}^{(k)}(p,q;x)t^{n+k},$$

since $\phi_{n+1}(p, q; x)$ is a polynomial of degree n. If we take x = 0 in the last formula and recall that

$$c_{n+k,k}(p,q) = \frac{1}{k!} \phi_{n+1+k}^{(k)}(p,q;0),$$

then from (3), and by Taylor's formula, we get

$$(1 - pt + qt^3)^{-(k+1)} = \sum_{n \ge 0} c_{n+k,k}(p,q)t^n.$$
(2.6)

Comparing (2.6) to (2.1) and (2.2), we see that

$$c_{n+k,k}(p,q) = \frac{1}{k!} \phi_{n+1+k}^{(k)}(p,q;0) = d_{n,k}$$

= $\sum_{i+j+s=n} {\binom{k+i}{k} \binom{k+j}{k} \binom{k+s}{k}} \alpha^i \beta^j \gamma^s.$ (2.7)

1998]

111

By (2.7), we see that

$$c_{n,k}(p,q) = d_{n-k,k} = \sum_{i+j+s=n-k} \binom{k+i}{k} \binom{k+j}{k} \binom{k+s}{k} \alpha^i \beta^j \gamma^s.$$

This completes the proof of Theorem 2.1. \Box

Remarks:

(*i*) If k = 0, then (2.3) becomes

$$c_{n,0}(p,q) = \sum_{i+j+s=n} \alpha^i \beta^j \gamma^s = \phi_{n+1}(p,q;0).$$

(ii) If p = 0, then (2.1) becomes

$$(1+qt^3)^{-(k+1)} = \sum_{n\geq 0} (-1)^n \binom{k+n}{n} q^n t^{3n}.$$

Thus, we get

$$c_{n,n-3k}(0,q) = (-1)^k \binom{n-2k}{k} q^k, \ c_{n,n-3k-1}(0,q) = 0, \ c_{n,n-3k-2}(0,q) = 0,$$

for $k \leq \lfloor n/3 \rfloor$. Now, from (1.2), we find that

$$\phi_{n+1}(0,q;x) = \sum_{k=0}^{\lfloor n/3 \rfloor} c_{n,n-3k}(0,q) x^{n-3k} = \sum_{k=0}^{\lfloor n/3 \rfloor} (-1)^k \binom{n-2k}{k} q^k x^{n-3k}.$$
 (2.8)

We shall prove the following theorem.

Theorem 2.2: The coefficients $c_{n,k}(p,q)$ have the following form:

$$c_{n,k}(p,q) = \sum_{r=0}^{\left[(n-k)/3\right]} (-1)^r \binom{n-2r}{r} \binom{n-3r}{k} q^r p^{n-3r-k}, \quad n \ge k.$$
(2.9)

Proof: Using (1.0), we see that $\phi_{n+1}(p, q; x) = \phi_{n+1}(0, q; x+p)$. Thus,

$$c_{n,k}(p,q) = \frac{1}{k!}\phi_{n+1}^{(k)}(p,q;0) = \frac{1}{k!}\phi_{n+1}^{(k)}(0,q;p).$$

Now, by (2.8), it follows that

$$\frac{1}{k!}\phi_{n+1}(0,q;p) = \sum_{r=0}^{[(n-k)/3]} (-1)^r \binom{n-2r}{r} \binom{n-3r}{k} q^r p^{n-3r-k}.$$

This is the desired equality (2.9). \Box

Corollary 2.1: From (2.9) or (2.3), we find that:

$$-\alpha - \beta - \gamma = -p;$$

$$(-\alpha)(-\beta) + (-\beta)(-\gamma) + (-\alpha)(-\gamma) = 0;$$

$$(-\alpha)(-\beta)(-\gamma) = q.$$

Hence,

 $c_{n,k}(-p,-q) = (-1)^{n-k} c_{n,k}(p,q).$

112

[MAY

3. A PARTICULAR CASE

In this section we shall consider a particular case of the polynomials $\phi_n(p,q;x)$. If $\alpha = \beta \neq \gamma$, then $\alpha = \beta = 2p/3$, $\gamma = -p/3$, and $27q = 4p^3$. In this case, by (2.1), we get

$$(1 - pt + qt^3)^{-(k+1)} = (1 - \alpha t)^{-2(k+1)} (1 - \gamma t)^{-(k+1)}$$
$$= \sum_{n \ge 0} \left(\sum_{i+j=n} \binom{2k+1+i}{i} \binom{k+j}{j} \alpha^i \gamma^j \right) t^n.$$

Therefore, we have

$$c_{n,k}(p,q) = (p/3)^{n-k} \sum_{i+j=n-k} (-1)^j 2^i \binom{2k+1+i}{i} \binom{k+j}{j}.$$

4. SOME INTERESTING SEQUENCES OF NUMBERS

Here we shall consider the following sequences of numbers.

(a) If we take x = -p, we get the sequence $\phi_n(p,q;-p) = 0$. This sequence has the following properties: $\phi_{3n}(p,q;-p) = \phi_{3n+2}(p,q;-p) = 0$ and $\phi_{3n+1}(p,q;-p) = (-1)^n q^n$. From relation (1.2), it follows that

$$\sum_{k=0}^{3n+l} (-1)^k p^k c_{3n+l,k}(p,q) = 0,$$

for l = 1, and

$$\sum_{k=0}^{3n} (-1)^k p^k c_{3n,k}(p,q) = (-1)^n q^n,$$

for l = 2.

(b) Using (1.0), for x = 0, we have the sequence $\{\phi_n(p,q;0)\}$, which is defined by

 $\phi_n(p,q;0) = p\phi_{n-1}(p,q;0) - q\phi_{n-3}(p,q;0),$

for $n \ge 2$, with initial values $\phi_{-1}(p, q; 0) = \phi_0(p, q; 0) = 0$ and $\phi_1(p, q; 0) = 1$.

5. RISING DIAGONAL POLYNOMIALS

Now, we define the polynomials $\phi_n^1(p,q;x)$ and $\phi_n^2(p,q;x)$. Also, we define the polynomials $\phi_n^m(x)$. First, we shall write the polynomials $\phi_n(p,q;x)$ in tabular form (see Table 1). We define the polynomials $\phi_n^1(p,q;x)$ by

$$\phi_{n+1}^{1}(p,q;x) = \sum_{k=0}^{\lfloor n/2 \rfloor} c_{n,k}^{1}(p,q) x^{k} = \sum_{k=0}^{\lfloor n/2 \rfloor} c_{n-k,k}(p,q) x^{k}, \qquad (5.1)$$

where $\phi_0^1(p,q;x) = 0$ and $c_{n,k}^1(p,q) = 0$ for $k > \lfloor n/2 \rfloor$. Also, from Table 1, we get

$$\phi_1^1(p,q;x) = 1, \quad \phi_2^1(p,q;x) = p, \quad \phi_3^1(p,q;x) = p^2 + x, \\ \phi_4^1(p,q;x) = p^3 - q + 2px, \quad \phi_5^1(p,q;x) = p^4 - 2pq + 3p^2x + x^2.$$
(5.2)

1998]

113

TABLE 1

n	•	1. A. • 1. 1. A. A. A.	•		•	·	•••
0	0	•	· •	•	•	•	
1	1	•	•	•	•	•	•••
2	p	+x	•	•	•	•	•••
3	p^2	+2px	$+ x^{2}$	•	•	•	•••
4	p^3-q	$+3p^{2}x$	$+3px^{2}$	$+x^{3}$		•	•••
5	p^4-2pq	$+(4p^{3}-q)x$	$+6p^2x^2$	$+4px^{3}$	$+ x^{4}$	•	•••
6	$p^{5}-3p^{2}q$	$+(5p^4-6pq)x$	$+(10p^3-3q)x^2$	$+10p^{2}x^{3}$	$+5px^{4}$	$+x^{5}$	•••
÷				:		:	•••

In fact, we will prove the following theorem.

.

Theorem 5.1: The polynomials $\phi_n^1(p,q;x)$ satisfy the following recurrence relation:

$$\phi_n^1(p,q;x) = p\phi_{n-1}^1(p,q;x) + x\phi_{n-2}^1(p,q;x) - q\phi_{n-3}^1(p,q;x), \quad n \ge 3.$$
(5.3)

Proof: To prove (5.3), we will use the notations $\phi_n^1(x)$ and $c_{n,k}$ instead of $\phi_n^1(p,q,x)$ and $c_{n,k}(p,q)$, respectively, and proceed by induction on *n*. From (5.2), we see that statement (5.3) holds for n = 3. Suppose statement (5.3) is true for $n \ge 3$. Using (5.1), and by (2.0), we obtain

$$\begin{split} \phi_{n+1}^{1}(x) &= c_{n,0} + \sum_{k=1}^{\lfloor n/2 \rfloor} c_{n-k,k} x^{k} \\ &= p c_{n-1,0} - q c_{n-3,0} + \sum_{k=1}^{\lfloor n/2 \rfloor} (c_{n-1-k,k-1} + p c_{n-1-k,k} - q c_{n-3-k,k}) x^{k} \\ &= p \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} c_{n-1-k,k} x^{k} - q \sum_{k=0}^{\lfloor (n-3)/2 \rfloor} c_{n-3-k,k} x^{k} + x \sum_{k=0}^{\lfloor (n-2)/2 \rfloor} c_{n-2-k,k} x^{k}, \end{split}$$

since the relation $c_{n,0} = pc_{n-1,0} - qc_{n-3,0}$ is valid for $n \ge 1$. Thus, statement (5.3) follows by the last equality. This completes the proof. \Box

Similarly, let $\phi_n^2(p,q;x)$ be the rising diagonal polynomial of $\phi_n^1(p,q;x)$, i.e.,

$$\phi_{n+1}^2(p,q;x) = \sum_{k=0}^{\lfloor n/3 \rfloor} c_{n-k,k}^1(p,q) x^k.$$

Furthermore, if we denote the process

$$\phi_n^0(x) \mapsto \phi_n^1(x) \mapsto \phi_n^2(x) \mapsto \dots \mapsto \phi_n^m(x)$$

by $\phi_n^0(x) \equiv \phi_n(p, q; x)$, then we have

$$c_{n,k}^0 = c_{n,k}$$
 and $c_{n,k}^{m+1} = c_{n-k,k}^m$. (5.4)

From relations (5.4), we get

$$c_{n,k}^m = c_{n-k,k}^{m-1} = \cdots = c_{n-mk,k}^0$$

Hence, for k = 0, we have

114

 $c_{n,0}^m = c_{n,0}^0 = c_{n,0}$

[MAY

If n = 0, 1, ..., m, then [n/(m+1)] = 0, so we have

$$\phi_{n+1}^m(x) = c_{n,0}^m = c_{n,0}, \quad n = 0, 1, \dots, m.$$

Also, we get

$$\phi_{n+1}^{m}(x) = \sum_{k=0}^{[n/(m+1)]} c_{n-mk,k} x^{k}, \qquad (5.5)$$

where $c_{n,k}^m = 0$ for k > [n/(m+1)]. Therefore, we are going to prove the following theorem.

Theorem 5.2: The polynomials $\phi_n^m(x)$ satisfy the recurrence relation

$$\phi_{n+1}^{m}(x) = p\phi_{n}^{m}(x) - q\phi_{n-2}^{m}(x) + x\phi_{n-m}^{m}(x), \quad n \ge m \ge 2,$$
(5.6)

where $\phi_{-1}^{m}(x) = \phi_{0}^{m}(x) = 0$ and $\phi_{n+1}^{m}(x) = c_{n,0}^{m}$, n = 0, 1, ..., m.

Proof: We prove that (5.6) holds for $n \ge m \ge 2$. If n = m, then

$$\phi_{m+1}^{m}(x) = c_{m,0} = pc_{m-1,0} - qc_{m-3,0}$$
$$= p\phi_{m}^{m}(x) - q\phi_{m-2}^{m}(x) + x\phi_{0}^{m}(x) \quad (\phi_{0}(p,q;x) = 0)$$

Assume now that $n \ge m+1$, then, by (2.0), we have

$$\begin{split} \phi_{n+1}^{m}(x) &= \sum_{k=0}^{[n/(m+1)]} c_{n-mk,k} x^{k} = c_{n,0} + \sum_{k=1}^{[n/(m+1)]} c_{n-mk,k} x^{k} \\ &= pc_{n-1,0} - qc_{n-3,0} + \sum_{k=1}^{[n/(m+1)]} (pc_{n-1-mk,k} - qc_{n-mk-3,k} + c_{n-mk-1,k-1}) x^{k} \quad (n-mk \ge 1) \\ &= p \sum_{k=0}^{[n/(m+1)]} c_{n-1-mk,k} x^{k} - q \sum_{k=0}^{[n/(m+1)]} c_{n-3-mk,k} x^{k} + x \sum_{k=0}^{[n/(m+1)]} c_{n-1-mk,k-1} x^{k-1} \\ &= p \sum_{k=0}^{[(n-1)/(m+1)]} c_{n-1-mk,k} x^{k} - q \sum_{k=0}^{[(n-3)/(m+1)]} c_{n-3-mk,k} x^{k} + x \sum_{k=0}^{[n/(m+1)]} c_{n-1-mk,k-1} x^{k-1} \\ &= p \phi_{n}^{m}(x) - q \phi_{n-2}^{m}(x) + x \phi_{n-m}^{m}(x). \quad \Box \end{split}$$

Corollary 5.1: The coefficients $c_{n,k}^m$ satisfy the following relation,

$$c_{n,k}^{m} = pc_{n-1,k}^{m} - qc_{n-3,k}^{m} + c_{n-1-m,k-1}^{m}, \quad m \ge 0, n \ge 2, n \ge m, k \ge 1,$$

where $c_{n,k}^m = c_{n,k}^m(p,q)$.

Corollary 5.2: For m = 2, from (5.6), we have

$$\phi_n^2(x) = p\phi_{n-1}^2(x) + (x-q)\phi_{n-2}^2(x), \quad n \ge 2,$$
(5.7)

with $\phi_0^2(x) = 0$, $\phi_{n+1}^2(x) = c_{n,0}^1 = c_{n,0}$, n = 0, 1.

Remark: For every $n \ge 1$, we have

$$\phi_n^2(p,q;x) = \phi_n(p,x-q;0).$$
(5.8)

1998]

115

Proof: By (1.0), the sequence $\{\phi_n(p, x-q; 0)\}$ satisfies relation (5.7) with $\phi_0(p, q-x; 0) = 0$, $\phi_1(p, q-x; 0) = 1$, $\phi_2(p, q-x; 0) = p$. From this and (5.7), we see that (5.8) holds for n = 1 and n = 2. If (5.8) holds for $n \le m$, then for n = m+1 we get

$$\phi_{m+1}^2(p,q;x) = p\phi_m^2(p,q;x) - (q-x)\phi_{m-2}^2(p,q;x)$$

= $p\phi_m(p,q-x;0) - (q-x)\phi_{m-2}(p,q-x;0) = \phi_{m+1}(p,q-x;0).$

Using induction on *n*, we conclude that relation (5.8) holds for every $n \ge 1$. By (5.8), and from (2.9) with k = 0, we get

$$\phi_{n+1}^2(p,q;x) = \sum_{r=0}^{\lfloor n/3 \rfloor} {\binom{n-2r}{r}} (x-q)^r p^{n-3r}.$$
(5.9)

Special Cases

For x = q, by (5.9), we have

$$\sum_{k=0}^{[n/3]} q^k c_{n-k,k}^1(p,q) = p^n$$

For p = 2 and q = 1, the last equality becomes

$$\sum_{k=0}^{[n/3]} c_{n-k,k}^1(2,1) = 2^n$$

For p = 0, the polynomials $\phi_{n+1}^2(p, q; x)$ have the following representations:

 $\phi_{n+1}^2(0,q;x) = (x-q)^s$

for n = 3s, and

$$\phi_{n+1}^2(0,q;x) = 0$$

for n = 3s + 1 and for n = 3s + 2.

6. GENERALIZATION

If we consider the general recurrence relation

$$U_n(x) = (x+p)U_{n-1}(x) - qU_{n-2}(x) + rU_{n-3}(x), \quad n \ge 3,$$

we find that

$$U_{n+1}(x) = \sum_{k=0}^{n} c_{n,k}(p,q,r) x^{k},$$

where

$$\sum_{n\geq 0} c_{n+k,k}(p,q,r)t^n = (1-pt+qt^2-rt^3)^{-(k+1)}.$$

In this case, we have $\alpha + \beta + \gamma = p$, $\alpha\beta + \alpha\gamma + \beta\gamma = q$, and $\alpha\beta\gamma = r$. Particularly, if $\alpha = \beta = \gamma = p/3$, then $q = p^2/3$ and $r = p^3/27$. So we get

$$\sum_{n\geq 0} c_{n+k,k}(p,q,r)t^n = (1-\alpha t)^{-3(k+1)} = \sum_{n\geq 0} \binom{3k+2+n}{3k+2} (p/3)^n t^n;$$

hence,

116

MAY

$$c_{n,k}(p,q,r) = {\binom{2k+2+n}{3k+2}}(p/3)^{n-k}.$$

Thus, we can define $B_n^1(x)$, i.e., a generalization of Morgan-Voyce polynomials, by setting $\alpha = \beta = \gamma = 1$ (i.e., p = 3, q = 3, r = 1),

$$B_n^1(x) = \sum_{k=0}^n \binom{n+2k+2}{3k+2} x^k$$

ACKNOWLEDGMENT

The author wishes to thank the referee for his/her great patience in reading this manuscript. I also appreciate the referee's insightful comments that helped to improve the presentation of this paper.

REFERENCES

- 1. R. André-Jeannin. "A Note on a General Class of Polynomials." *The Fibonacci Quarterly* **32.5** (1994):445-54.
- 2. R. André-Jeannin. "A Generalization of Morgan-Voyce Polynomials." *The Fibonacci Quarterly* **32.3** (1994):228-32.
- 3. G. B. Đordević. "Mixed Fermat Polynomials." The Fibonacci Quarterly 31.2 (1993):152-57.
- 4. A. F. Horadam & Br. J. M. Mahon. "Pell and Pell-Lucas Polynomials." *The Fibonacci Quarterly* 23.2 (1985):7-20.
- 5. A. F. Horadam. "Chebyshev and Fermat Polynomials for Diagonal Functions." The Fibonacci Quarterly 19.4 (1979):328-33.

AMS Classification Numbers: 11B39, 26A24, 11B83

*** *** ***

NEW EDITOR AND SUBMISSION OF ARTICLES

Starting March 1, 1998, all new articles must be submitted to:

PROFESSOR CURTIS COOPER

Department of Mathematics and Computer Science Central Missouri State University Warrensburg, MO 64093-5045 e-mail: ccooper@cnc8851@cmsu2.cmsu.edu

Any article that does not satisfy all of the criteria as listed on the inside front cover of the journal will be returned immediately.