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1. INTRODUCTION 

In [1], R. Andre-Jeannin considered a class of polynomials Un(p, q; x) defined by 

Un(P> ft x) = (x + P)U„-i(P, ft x) ~ qUn-iiP, ft x), n>\9 

with initial values U0(p, q;x) = 0 and U{(p, q;x) = l. 
Particular cases of Un(p,q;x) are: the well-known Fibonacci polynomials Fn(x); the Pell 

polynomials Pn(x) (see [4]); the Fermat polynomials of the first kind fl(x) (see [5], [3]); and the 
Morgan-Voyce polynomials of the second kind Bn(x) (see [2]). 

In this paper we shall consider the polynomials $„(p, q; x) defined by 

fa(P, ft x) = (x + P)0n-i(P,ft *)-qfa-3(P> ft *)> 0-°) 
with initial values <j>_x{p, q\ x) - <fi0(p, q;x) = 0 and <t>x{p, q;x) = l. The parameters p and q are 
arbitrary real numbers, q * 0. 

Let us denote by a, /?, and y the complex numbers, so that they satisfy 

a+p + y=p^ ap + ay+py = 0, afiy = -q. (1.1) 

The first few members of the sequence {<f>n(p, q; x)} are: 

fad**ft>*)= P+x> 03(P>ft>x)= P2+2PX+x2> 04(P>ftx) = p3-q+3P2X+3PX2+*3-

By induction on n, we can say that there is a sequence {cn k(p, q)}n>o,k>o of numbers, so that 
it holds 

fa+i(P> ftx) = Y, cn,k(P> 4)x\ 0 -2) 
k>0 

where cnk(p, q) - 0 for k > n and cn n(p, q) = l. Therefore, if we set c_lk(p, q) - c_xk{jp, q) = 0, 
k > 0, then we have 

t-i(P, ftx) = 1Lc-2,k(P> ?)** and 0o(p, q;x) = ]Tc_lk(p, q)xk 

k>0 k>0 

Later on, we consider some other interesting sequences of numbers, define the polynomials 
0l(p, q\ x) and $(p, q\ x), which are rising diagonal polynomials of (j)n(p, q\ x) and <j>l

n(p, q; x), 
respectively, and finally, consider the generalized polynomials </>™{x). 

2. DETERMINATION OF THE COEFFICIENTS cnk(p, q) 

The main purpose of this section is to determine the coefficients cnk(p, q). First, for n>\, 
& > 1, from (1.0), (1.1), and (1.2), we obtain 

Cn.k(P> 4) = Cn-l,k-l(P> q)+PCn-l,k(P> 9) - Wn-3,k(P> ?) 
= V U - I ( A # ) + ( ^ + / ? ) ^ I , ^ 
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Therefore, we shall prove the following lemma. 

Lemma 2.1: For every k > 0, we have 

(l-pt + qt'T^^d^t", (2.1) 

where 

<..=jj*rX^X*r>^v. (2.2) 
Proof: From (2.1), using (1.1), we get 

(l-pt + qt3y(k+l) = (1 - o0~(t+1)(l - Pty(k+l\\ - yty<k+1> 

w>0 /+ /+$=« v /V /V / J+/4 

Statement (2.2) follows immediately from the last equality. D 
Now we shall prove the following theorem. 

Theorem 2.1: The coefficients c^k(p, q) are given by 

i+j+s=n-kv / V / v y 

Proof: First, let us define the generating function of the sequence <f>n(p, q; x) by 

F(*,O = I>„ + 1 (A ?;*)'"• (2.4) 
«>0 

Then, using (1.0), we find 

F(x,t) = (\~(p + x)t+qt3)-\ (2.5) 

Now, from (2.5) and (2.4), we deduce that 

since ^„+1(p, q\ x) is a polynomial of degree n. If we take x = 0 in the last formula and recall that 

<W*.*(A 9) = ̂ C U ( A ?; o), 

then from (3), and by Taylor's formula, we get 

(l-pt + qt3)^ = £ W^tf)*". (2-6) 
w>0 

Comparing (2.6) to (2.1) and (2.2), we see that 
1 

<w,tO, q) = j\€Lk(p, <r, o)=dnk 

i+j+s-n 

k+f)(k+j\(k+s-),„,- <27> = ?T"T* 
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By (2.7), we see that 

This completes the proof of Theorem 2.1. D 

Remarks: 
(i) If k = 0, then (2.3) becomes 

c„,0(p,q)= I « 7 ? ; r s = ^+1(/>,<7;0). 
i+j+s=n 

(ii) If p = 0, then (2.1) becomes 

»>o V / 
Thus, we get 

cn,n-3k(0,q) = (-l)k{n~k
2ky, cn^3k_l(0,q) = 0, cn,„_3k_2(0, q) = 0, 

for & < [/f/3]. Now, from (1.2), we find that 
[«/3J [n/3] / „ o/A 

0n+Mq;x)=%cn,„_3k(O,q)x"-3k = £(-1)* * * M*""**- (2-8) 
£=0 k=0 V ' 

We shall prove the following theorem. 

Theorem 2.2: The coefficients cw^(/?, q) have the following form: 

<x*(A *) = K |P(-1){^X" ̂ V ^ ' » * *• (2-9) 
Proof: Using (1.0), we see that $„+i(p9 q; x) = ^„+1(0, q;x + p). Thus, 

<*.*(/>, ?) = jj/£l(p, <?; o) = ^ e \ ( o , ^; P). 

Now, by (2.8), it follows that 

This is the desired equality (2.9). • 

Corollary 2.1: From (2.9) or (2.3), we find that: 

-a-fi-r = -p; 
(-«)(-/?)+{-p){-y)+(-aX-r) = 0; 

(raX-P%-r) = q. 
Hence, 

^*(-p,-?)=Hr*vfo*)-
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3. A PARTICULAR CASE 

In this section we shall consider a particular case of the polynomials <fin(p, q\ x). 
If a = p^y, then a = ]3 = 2p/3, y = -p/3,md27q = 4p3. In this case, by (2.1)? we get 

(1 -pt + qt3y(k+l) = (1 - of )~2(*+1)(l - rt)~(k+l) 

\t". 
( '2* + l + i Y * + / | „iv? 

-1 T , , a'r 
n>0 

Therefore, we have 

cn,k(P,q)=(p/irk E(-iy2'f2^.1+/)P;A 
i+j=n-lc V J\ J J 

4, SOME INTERESTING SEQUENCES OF NUMBERS 

Here we shall consider the following sequences of numbers. 

(a) If we take x - -p9 we get the sequence '#„(p, q',-p) = 0. This sequence has the follow-
ing properties: fcn(p, q\-p) = <f>3n+2(p, q; -/>)•= 0 and <f>3n+l(p, q;~p) = (-1) V . From relation 
(1.2), it follows that 

3n+l 

I(-l)VW(A<7) = 0, 
fc=0 

for /= 1, and 
3« 

Z 
k=0 

X(-i)kp%„,k(p,q) = (-Wqn, 

for/ = 2. 

(b) Using (1.0), for x = 0, we have the sequence {^„(p, ̂ ; 0)}, which is defined by 

0„(A ?; 0) = p4„-i(p, q; 0) - #„_3(A q; 0), 

for w > 2, with initial values ^(p, q; 0) = $0(p9 q;0) = 0 and ^(j?, g; 0) = 1. 

5* RISING DIAGONAL POLYNOMIALS 

Now, we define the polynomials </>l
n(p, q; x) and $l(p, q\x).' Also, we define the polynomials 

4>™(x). First, we shall write the polynomials $„(p, q; x) in tabular form (see Table 1). We define 
the polynomials (/>\(p, q',x) by 

[nil] [nil] 

4n+iO>>qm>x)= Hclk(p*q)xk = Xcn-kAp^)xk:> (5 J) 

where ^ ( p , q;x) = 0 and c^k(p, q) = 0 for k > [w/2]. Also, from Table 1, we get 

4>i(P,qm,x) = l, $l
2(p,qix) = p, $l

3(p,q;x)^p2+x, 

4>\(P, qi%) = P3-q + 2px, $(p, q; x) = p4-2pq + 3p2x + x2. 
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TABLE 1 

n 
~o~ 
1 
2 
3 
4 
5 
6 

0 
1 
P 
P2 

p3-q 
p4-2pq 
p5-3p2q 

+ x 
+ 2px 
+ 3p2x 

+ (4p3-q)x 
+ (5p4 - 6pq)x 

+ x2 

+ 3px2 

+ 6p2x2 

+ (l0p3-3q)x2 

+ x3 

+ 4px3 

+ \0p2x3 
+ x4 • ••• 

+ 5px4 +x5 ••• 

In fact, we will prove the following theorem. 

Theorem 5.1: The polynomials $\(p,..q; x) satisfy the following recurrence relation: 

4n(P, T, x) = Pfin-i(P, q\ x) + xf„_2(p, q\ x) -q<f>l
n.3(p, q; x), n>3. (5.3) 

Proof: To prove (5.3), we will use the notations <f>l„(x) and cnk instead of (j>\{p, q\ x) and 
cnk{p, q), respectively, and proceed by induction on n. From (5.2), we see that statement (5.3) 
holds for n = 3. Suppose statement (5.3) is true for n > 3. Using (5.1), and by (2.0), we obtain 

[nT2] 

Ĥ+lOO - Cn,0 + Z^Cn-k,kX 

k=l 

[nT2] 

~ PCn-l,0 ~ qCn-3,0 + 2^ (Cn-l-k,k-l + PCn-\-k,k ~ qCn-3-k,k)X 

k=l 
[(n-^/2] 

~P Lu Cn-\-k,kX 

k=0 

[(/i-2}/2]. K«^/2] 
~Q L^iCn-3-k,kX + X £^Cn-2-k,kX •> 

k=0 k=0 

since the relation c„tQ = pcn_xo -qcn_30 is valid for n > 1. Thus, statement (5.3) follows by the last 
equality. This completes the proof. • 

Similarly, let (f>l(p, q\ x) be the rising diagonal polynomial of <j>\(p, q\ x), i.e., 

fn+\(p, q,x) = Xcn-k,k(p, q)xk-
k=0 

Furthermore, if we denote the process 

by </Pn(x) = <f>„(p, q; x), then we have 
Cn,k~Cn,k a n^ C™t = C™_k k . 

From relations (5.4), we get 

(5.4) 

Hence, for k = 0, we have 

rm _ rm-\ _ , . , _ ^0 
^n,k ~ ^n-k,k ~~ ~ ^n-mk,k-

nYt\ s>0 — n 
un,Q — cn,Q ~~ cw,0-

114 [MAY 



ON A GENERALIZATION OF A CLASS OF POLYNOMIALS 

If n- 0,1,..., m, then[n/(m + l)] = 0, so we have 

ffnW = ^ o = cfl,o, w = 0,1,...,w. 

Also, we get 

[«/(m+l)] 

fc=0 

where c™k = 0 for A: > [n I (m +1)]. Therefore, we are going to prove the following theorem. 

Theorem 5.2: The polynomials </>™(x) satisfy the recurrence relation 
4&l(.x) = pfiHx)-qfl_2(x) + xft_m(x), n>m>2, (5 

where ^ ( x ) = $?(*) = ° a n d C+i(*) = <o> « = °> 1. • • • >™ • 

Proof: We prove that (5.6) holds for n > m > 2. If n = m, then 

fm+lW = Cm,0~ PCm-l,0 ~ <7Cm-3,0 

= P C X X ) - ?C-2W+x?»o (x) OO(A ?; ^) - o). 
Assume now that n>m + l, then, by (2.0), we have 

[n/(m+l)] [n/(m+l)] 

C+l(X) = L^Cn-mk,kX ~ Cn,0+ jL*Cn-mk,kX 

k=0 k=\ 

[»/(w+l)l 
= P ^ - 1 , 0 - ? ^ - 3 , 0 + X (PCn-l-mk,k ~ ^Cn-mk-3,k + ^ - m f c - U - i ) * * (n ~ fflk > 1) 

[«/(w+l)] [«/(m+l)] [n/(w+l)] 

" i 7 zLC«-l-wfe,A:X ~~9 iLC«-3->nfc,fcX + X 2 - » C « - l - ^ , ^ - l X 

fc=0 fc=0 fc=0 

[(w-l)/(/w+l)] [(«-3)/(/w+l)] [(w-l-/w)/(/w+l)] 

= P lLCn-l-mk,k*k-(I E C «-3-^ ,^ + X I X •m-mk-\,k 
k 

k=0 k=0 k=0 

= pft(x)-qfi_2(x) + xfi_m(x). D 

Corollary 5.1: The coefficients c™t satisfy the following relation, 

< * = / < - u - 9C3.k + <£-i-m.*-i, m > 0,« > 2,» > m, fc > 1, 

where c j ; k =< t (p , ^ ) . 

Corollary 5.2: For m = 2, from (5.6), we have 
<t>l(x) = P<t>ll(x) + (x-q)<t>l2(x), n>2, (5 

with ft0(x) = 0, <t>2
n+l(x) = cj 0 = c„>0, « = 0,1. 

Remark: For every « > 1, we have 
<t>2„(P,<i;x) = <t>n(p,x-q;0). (5 
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Proof: By (1.0), the sequence {&„(p,x-q;0)} satisfies relation (5.7) with <f>Q(p,q-x;0) = 0, 
&i(P> 9 ~ x> 0) ~ *> ̂ ( A ? - ^ 0 ) - ^ ' F r ° m this and (5.7), we see that (5.8) holds for n = 1 and 
# = 2. If (5.8) holds for n<m, then for ft = w +1 we get 

^H-I(A ?;*) = P0*fo ?; *) - (g - x)4h-2(p> ?;x) 
= P<t>m(P,q~x; 0)-(q-x)(fim_2(p,q-x; 0) = <f>m+l(p,q-x; 0). 

Using induction on ft, we conclude that relation (5.8) holds for every n > 1. By (5.8), and from 
(2.9) with k = 0, we get 

[«/3]/< _ 9 \ 

^ . ( P , f , x ) = I " , ( x - ? ) ' ^ . (5-9) 

Special Cases 
For x = q, by (5.9), we have 

[n/3] 

Jc=0 

For /? = 2 and # = 1, the last equality becomes 
[n/3] 

k=0 

For p - 0, the polynomials ^JJ+I(A #> x) ^ a v e ̂  following representations: 

&i(o, ?;*) = (* -? ) ' 
for w = 3s, and 

&i(o,?;*) = o 
for ft = 3s +1 and for n = 3s + 2. 

6. GENERALIZATION 

If we consider the general recurrence relation 

U„(x) = (x + /?)£/„_!(*) - qUn_2(x) + rUn_3(xl n > 3, 

we find that 

^ ,+ I ( * )=Z C " , * (A? , >-)**, 
fc=0 

where 

I W ( A ?> ') '" = (l-pt+02-rPT^. 
n>0 

In this case, we have a+fl + y = p, afl+ay + fiy - q, and aj3y = r. Particularly, if a - ft = 
y = p/3, then q = p2/3 and r = p3/27. So we get 

n>0 n>0 ^ ' 
hence, 
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*k(P,q,r) = ^k
3H2n)(P'3rk. 

Thus, we can define B\{x), i.e., a generalization of Morgan-Voyce polynomials, by setting 
a = p = y = 1 (i.e., p = 3,q = 3,r = 1), 
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