ON A GENERALIZATION OF A CLASS OF POLYNOMIALS

Gospava B. Djordjevic

Department of Mathematics, University of Nis, 16000 Leskovac, Yugoslavia
(Submitted February 1996-Final Revision August 1997)

1. INTRODUCTION

In [1], R. André-Jeannin considered a class of polynomials $U_{n}(p, q ; x)$ defined by

$$
U_{n}(p, q ; x)=(x+p) U_{n-1}(p, q ; x)-q U_{n-2}(p, q ; x), \quad n>1,
$$

with initial values $U_{0}(p, q ; x)=0$ and $U_{1}(p, q ; x)=1$.
Particular cases of $U_{n}(p, q ; x)$ are: the well-known Fibonacci polynomials $F_{n}(x)$; the Pell polynomials $P_{n}(x)$ (see [4]); the Fermat polynomials of the first kind $\phi(x)$ (see [5], [3]); and the Morgan-Voyce polynomials of the second kind $B_{n}(x)$ (see [2]).

In this paper we shall consider the polynomials $\phi_{n}(p, q ; x)$ defined by

$$
\begin{equation*}
\phi_{n}(p, q ; x)=(x+p) \phi_{n-1}(p, q ; x)-q \phi_{n-3}(p, q ; x), \tag{1.0}
\end{equation*}
$$

with initial values $\phi_{-1}(p, q ; x)=\phi_{0}(p, q ; x)=0$ and $\phi_{1}(p, q ; x)=1$. The parameters p and q are arbitrary real numbers, $q \neq 0$.

Let us denote by α, β, and γ the complex numbers, so that they satisfy

$$
\begin{equation*}
\alpha+\beta+\gamma=p, \quad \alpha \beta+\alpha \gamma+\beta \gamma=0, \quad \alpha \beta \gamma=-q . \tag{1.1}
\end{equation*}
$$

The first few members of the sequence $\left\{\phi_{n}(p, q ; x)\right\}$ are:

$$
\phi_{2}(p, q ; x)=p+x ; \quad \phi_{3}(p, q ; x)=p^{2}+2 p x+x^{2} ; \quad \phi_{4}(p, q ; x)=p^{3}-q+3 p^{2} x+3 p x^{2}+x^{3} .
$$

By induction on n, we can say that there is a sequence $\left\{c_{n, k}(p, q)\right\}_{n \geq 0, k \geq 0}$ of numbers, so that it holds

$$
\begin{equation*}
\phi_{n+1}(p, q ; x)=\sum_{k \geq 0} c_{n, k}(p, q) x^{k}, \tag{1.2}
\end{equation*}
$$

where $c_{n, k}(p, q)=0$ for $k>n$ and $c_{n, n}(p, q)=1$. Therefore, if we set $c_{-1, k}(p, q)=c_{-2, k}(p, q)=0$, $k \geq 0$, then we have

$$
\phi_{-1}(p, q ; x)=\sum_{k \geq 0} c_{-2, k}(p, q) x^{k} \text { and } \phi_{0}(p, q ; x)=\sum_{k \geq 0} c_{-1, k}(p, q) x^{k} .
$$

Later on, we consider some other interesting sequences of numbers, define the polynomials $\phi_{n}^{1}(p, q ; x)$ and $\phi_{n}^{2}(p, q ; x)$, which are rising diagonal polynomials of $\phi_{n}(p, q ; x)$ and $\phi_{n}^{1}(p, q ; x)$, respectively, and finally, consider the generalized polynomials $\phi_{n}^{m}(x)$.

2. DETERMINATION OF THE COEFFICIENTS $\boldsymbol{c}_{n, k}(p, q)$

The main purpose of this section is to determine the coefficients $c_{n, k}(p, q)$. First, for $n \geq 1$, $k \geq 1$, from (1.0), (1.1), and (1.2), we obtain

$$
\begin{align*}
c_{n, k}(p, q) & =c_{n-1, k-1}(p, q)+p c_{n-1, k}(p, q)-q c_{n-3, k}(p, q) \\
& =c_{n-1, k-1}(p, q)+(\alpha+\beta) c_{n-1, k}(p, q)+\gamma\left(c_{n-1, k}(p, q)-\gamma(\alpha+\beta) c_{n-3, k}(p, q)\right) . \tag{2.0}
\end{align*}
$$

Therefore, we shall prove the following lemma.
Lemma 2.1: For every $k \geq 0$, we have

$$
\begin{equation*}
\left(1-p t+q t^{3}\right)^{-(k+1)}=\sum_{n \geq 0} d_{n, k} t^{n} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{n, k}=\sum_{i+j+s=n}\binom{k+i}{k}\binom{k+j}{k}\binom{k+s}{k} \alpha^{i} \beta^{j} \gamma^{s} \tag{2.2}
\end{equation*}
$$

Proof: From (2.1), using (1.1), we get

$$
\begin{aligned}
\left(1-p t+q t^{3}\right)^{-(k+1)} & =(1-\alpha t)^{-(k+1)}(1-\beta t)^{-(k+1)}(1-\gamma t)^{-(k+1)} \\
& =\sum_{n \geq 0} \sum_{i+j+s=n}\binom{k+i}{k}\binom{k+j}{k}\binom{k+s}{k} \alpha^{i} \beta^{j} \gamma^{s} t^{n}
\end{aligned}
$$

Statement (2.2) follows immediately from the last equality.
Now we shall prove the following theorem.
Theorem 2.1: The coefficients $c_{n, k}(p, q)$ are given by

$$
\begin{equation*}
c_{n, k}=\sum_{i+j+s=n-k}\binom{k+i}{k}\binom{k+j}{k}\binom{k+s}{k} \alpha^{i} \beta^{j} \gamma^{s} \tag{2.3}
\end{equation*}
$$

Proof: First, let us define the generating function of the sequence $\phi_{n}(p, q ; x)$ by

$$
\begin{equation*}
F(x, t)=\sum_{n \geq 0} \phi_{n+1}(p, q ; x) t^{n} \tag{2.4}
\end{equation*}
$$

Then, using (1.0), we find

$$
\begin{equation*}
F(x, t)=\left(1-(p+x) t+q t^{3}\right)^{-1} \tag{2.5}
\end{equation*}
$$

Now, from (2.5) and (2.4), we deduce that

$$
\frac{\partial^{k} F(x, t)}{\partial x^{k}}=\frac{k!t^{k}}{\left(1-(x+p) t+q t^{3}\right)^{k+1}}=\sum_{n \geq 0} \phi_{n+1+k}^{(k)}(p, q ; x) t^{n+k}
$$

since $\phi_{n+1}(p, q ; x)$ is a polynomial of degree n. If we take $x=0$ in the last formula and recall that

$$
c_{n+k, k}(p, q)=\frac{1}{k!} \phi_{n+1+k}^{(k)}(p, q ; 0)
$$

then from (3), and by Taylor's formula, we get

$$
\begin{equation*}
\left(1-p t+q t^{3}\right)^{-(k+1)}=\sum_{n \geq 0} c_{n+k, k}(p, q) t^{n} \tag{2.6}
\end{equation*}
$$

Comparing (2.6) to (2.1) and (2.2), we see that

$$
\begin{align*}
c_{n+k, k}(p, q) & =\frac{1}{k!} \phi_{n+1+k}^{(k)}(p, q ; 0)=d_{n, k} \\
& =\sum_{i+j+s=n}\binom{k+i}{k}\binom{k+j}{k}\binom{k+s}{k} \alpha^{i} \beta^{j} \gamma^{s} \tag{2.7}
\end{align*}
$$

By (2.7), we see that

$$
c_{n, k}(p, q)=d_{n-k, k}=\sum_{i+j+s=n-k}\binom{k+i}{k}\binom{k+j}{k}\binom{k+s}{k} \alpha^{i} \beta^{j} \gamma^{s}
$$

This completes the proof of Theorem 2.1.

Remarks:

(i) If $k=0$, then (2.3) becomes

$$
c_{n, 0}(p, q)=\sum_{i+j+s=n} \alpha^{i} \beta^{j} \gamma^{s}=\phi_{n+1}(p, q ; 0) .
$$

(ii) If $p=0$, then (2.1) becomes

$$
\left(1+q t^{3}\right)^{-(k+1)}=\sum_{n \geq 0}(-1)^{n}\binom{k+n}{n} q^{n} t^{3 n}
$$

Thus, we get

$$
c_{n, n-3 k}(0, q)=(-1)^{k}\binom{n-2 k}{k} q^{k}, c_{n, n-3 k-1}(0, q)=0, c_{n, n-3 k-2}(0, q)=0
$$

for $k \leq[n / 3]$. Now, from (1.2), we find that

$$
\begin{equation*}
\phi_{n+1}(0, q ; x)=\sum_{k=0}^{[n / 3]} c_{n, n-3 k}(0, q) x^{n-3 k}=\sum_{k=0}^{[n / 3]}(-1)^{k}\binom{n-2 k}{k} q^{k} x^{n-3 k} \tag{2.8}
\end{equation*}
$$

We shall prove the following theorem.
Theorem 2.2: The coefficients $c_{n, k}(p, q)$ have the following form:

$$
\begin{equation*}
c_{n, k}(p, q)=\sum_{r=0}^{[(n-k(13]}(-1)^{r}\binom{n-2 r}{r}\binom{n-3 r}{k} q^{r} p^{n-3 r-k}, \quad n \geq k \tag{2.9}
\end{equation*}
$$

Proof: Using (1.0), we see that $\phi_{n+1}(p, q ; x)=\phi_{n+1}(0, q ; x+p)$. Thus,

$$
c_{n, k}(p, q)=\frac{1}{k!} \phi_{n+1}^{(k)}(p, q ; 0)=\frac{1}{k!} \phi_{n+1}^{(k)}(0, q ; p)
$$

Now, by (2.8), it follows that

$$
\frac{1}{k!} \phi_{n+1}(0, q ; p)=\sum_{r=0}^{[(n-k(3]}(-1)^{r}\binom{n-2 r}{r}\binom{n-3 r}{k} q^{r} p^{n-3 r-k}
$$

This is the desired equality (2.9).
Corollary 2.1: From (2.9) or (2.3), we find that:

$$
\begin{gathered}
-\alpha-\beta-\gamma=-p \\
(-\alpha)(-\beta)+(-\beta)(-\gamma)+(-\alpha)(-\gamma)=0 \\
(-\alpha)(-\beta)(-\gamma)=q
\end{gathered}
$$

Hence,

$$
c_{n, k}(-p,-q)=(-1)^{n-k} c_{n, k}(p, q)
$$

3. A PARTICULAR CASE

In this section we shall consider a particular case of the polynomials $\phi_{n}(p, q ; x)$.
If $\alpha=\beta \neq \gamma$, then $\alpha=\beta=2 p / 3, \gamma=-p / 3$, and $27 q=4 p^{3}$. In this case, by (2.1), we get

$$
\begin{aligned}
\left(1-p t+q t^{3}\right)^{-(k+1)} & =(1-\alpha t)^{-2(k+1)}(1-\gamma t)^{-(k+1)} \\
& =\sum_{n \geq 0}\left(\sum_{i+j=n}\binom{2 k+1+i}{i}\binom{k+j}{j} \alpha^{i} \gamma^{j}\right) t^{n} .
\end{aligned}
$$

Therefore, we have

$$
c_{n, k}(p, q)=(p / 3)^{n-k} \sum_{i+j=n-k}(-1)^{j} 2^{i}\binom{2 k+1+i}{i}\binom{k+j}{j} .
$$

4. SOME INTERESTING SEQUENCES OF NUMBERS

Here we shall consider the following sequences of numbers.
(a) If we take $x=-p$, we get the sequence $\phi_{n}(p, q ;-p)=0$. This sequence has the following properties: $\phi_{3 n}(p, q ;-p)=\phi_{3 n+2}(p, q ;-p)=0$ and $\phi_{3 n+1}(p, q ;-p)=(-1)^{n} q^{n}$. From relation (1.2), it follows that

$$
\sum_{k=0}^{3 n+l}(-1)^{k} p^{k} C_{3 n+l, k}(p, q)=0
$$

for $l=1$, and

$$
\sum_{k=0}^{3 n}(-1)^{k} p^{k} G_{3 n, k}(p, q)=(-1)^{n} q^{n},
$$

for $l=2$.
(b) Using (1.0), for $x=0$, we have the sequence $\left\{\phi_{n}(p, q ; 0)\right\}$, which is defined by

$$
\phi_{n}(p, q ; 0)=p \phi_{n-1}(p, q ; 0)-q \phi_{n-3}(p, q ; 0),
$$

for $n \geq 2$, with initial values $\phi_{-1}(p, q ; 0)=\phi_{0}(p, q ; 0)=0$ and $\phi_{1}(p, q ; 0)=1$.

5. RISING DIAGONAL POLYNOMIALS

Now, we define the polynomials $\phi_{n}^{1}(p, q ; x)$ and $\phi_{n}^{2}(p, q ; x)$. Also, we define the polynomials $\phi_{n}^{m}(x)$. First, we shall write the polynomials $\phi_{n}(p, q ; x)$ in tabular form (see Table 1). We define the polynomials $\phi_{n}^{1}(p, q ; x)$ by

$$
\begin{equation*}
\phi_{n+1}^{1}(p, q ; x)=\sum_{k=0}^{[n / 2]} c_{n, k}^{1}(p, q) x^{k}=\sum_{k=0}^{[n / 2]} c_{n-k, k}(p, q) x^{k}, \tag{5.1}
\end{equation*}
$$

where $\phi_{0}^{1}(p, q ; x)=0$ and $c_{n, k}^{1}(p, q)=0$ for $k>[n / 2]$. Also, from Table 1, we get

$$
\begin{align*}
& \phi_{1}^{1}(p, q ; x)=1, \quad \phi_{2}^{1}(p, q ; x)=p, \quad \phi_{3}^{1}(p, q ; x)=p^{2}+x \tag{5.2}\\
& \phi_{4}^{1}(p, q ; x)=p^{3}-q+2 p x, \quad \phi_{5}^{1}(p, q ; x)=p^{4}-2 p q+3 p^{2} x+x^{2} .
\end{align*}
$$

TABLE 1

n	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\ldots
0	0	\cdot	\cdot	\cdot	\cdot	\cdot	\cdots
1	1	\cdot	\cdot	\cdot	\cdot	\cdot	\ldots
2	p	$+x$	\cdot	\cdot	\cdot	\cdot	\ldots
3	p^{2}	$+2 p x$	$+x^{2}$	\cdot	\cdot	\cdot	\ldots
4	$p^{3}-q$	$+3 p^{2} x$	$+3 p x^{2}$	$+x^{3}$	\cdot	\cdot	\ldots
5	$p^{4}-2 p q$	$+\left(4 p^{3}-q\right) x$	$+6 p^{2} x^{2}$	$+4 p x^{3}$	$+x^{4}$	\cdot	\ldots
6	$p^{5}-3 p^{2} q$	$+\left(5 p^{4}-6 p q\right) x$	$+\left(10 p^{3}-3 q\right) x^{2}$	$+10 p^{2} x^{3}$	$+5 p x^{4}$	$+x^{5}$	\ldots
\vdots	\cdots						

In fact, we will prove the following theorem.
Theorem 5.1: The polynomials $\phi_{n}^{1}(p, q ; x)$ satisfy the following recurrence relation:

$$
\begin{equation*}
\phi_{n}^{1}(p, q ; x)=p \phi_{n-1}^{1}(p, q ; x)+x \phi_{n-2}^{1}(p, q ; x)-q \phi_{n-3}^{1}(p, q ; x), \quad n \geq 3 \tag{5.3}
\end{equation*}
$$

Proof: To prove (5.3), we will use the notations $\phi_{n}^{1}(x)$ and $c_{n, k}$ instead of $\phi_{n}^{1}(p, q ; x)$ and $c_{n, k}(p, q)$, respectively, and proceed by induction on n. From (5.2), we see that statement (5.3) holds for $n=3$. Suppose statement (5.3) is true for $n \geq 3$. Using (5.1), and by (2.0), we obtain

$$
\begin{aligned}
\phi_{n+1}^{1}(x) & =c_{n, 0}+\sum_{k=1}^{[n / 2]} c_{n-k, k} x^{k} \\
& =p c_{n-1,0}-q c_{n-3,0}+\sum_{k=1}^{[n / 2]}\left(c_{n-1-k, k-1}+p c_{n-1-k, k}-q c_{n-3-k, k}\right) x^{k} \\
& =p \sum_{k=0}^{[(n-1) / 2]} c_{n-1-k, k} x^{k}-q \sum_{k=0}^{[(n-3) / 2]} c_{n-3-k, k} x^{k}+x \sum_{k=0}^{[(n-2) / 2]} c_{n-2-k, k} x^{k}
\end{aligned}
$$

since the relation $c_{n, 0}=p c_{n-1,0}-q c_{n-3,0}$ is valid for $n \geq 1$. Thus, statement (5.3) follows by the last equality. This completes the proof.

Similarly, let $\phi_{n}^{2}(p, q ; x)$ be the rising diagonal polynomial of $\phi_{n}^{1}(p, q ; x)$, i.e.,

$$
\phi_{n+1}^{2}(p, q ; x)=\sum_{k=0}^{[n / 3]} c_{n-k, k}^{1}(p, q) x^{k}
$$

Furthermore, if we denote the process

$$
\phi_{n}^{0}(x) \mapsto \phi_{n}^{1}(x) \mapsto \phi_{n}^{2}(x) \mapsto \cdots \mapsto \phi_{n}^{m}(x)
$$

by $\phi_{n}^{0}(x) \equiv \phi_{n}(p, q ; x)$, then we have

$$
\begin{equation*}
c_{n, k}^{0}=c_{n, k} \quad \text { and } \quad c_{n, k}^{m+1}=c_{n-k, k}^{m} \tag{5.4}
\end{equation*}
$$

From relations (5.4), we get

$$
c_{n, k}^{m}=c_{n-k, k}^{m-1}=\cdots=c_{n-m k, k}^{0}
$$

Hence, for $k=0$, we have

$$
c_{n, 0}^{m}=c_{n, 0}^{0}=c_{n, 0} .
$$

If $n=0,1, \ldots, m$, then $[n /(m+1)]=0$, so we have

$$
\phi_{n+1}^{m}(x)=c_{n, 0}^{m}=c_{n, 0}, \quad n=0,1, \ldots, m
$$

Also, we get

$$
\begin{equation*}
\phi_{n+1}^{m}(x)=\sum_{k=0}^{[n /(m+1)]} c_{n-m k, k} x^{k} \tag{5.5}
\end{equation*}
$$

where $c_{n, k}^{m}=0$ for $k>[n /(m+1)]$. Therefore, we are going to prove the following theorem.
Theorem 5.2: The polynomials $\phi_{n}^{m}(x)$ satisfy the recurrence relation

$$
\begin{equation*}
\phi_{n+1}^{m}(x)=p \phi_{n}^{m}(x)-q \phi_{n-2}^{m}(x)+x \phi_{n-m}^{m}(x), \quad n \geq m \geq 2 \tag{5.6}
\end{equation*}
$$

where $\phi_{-1}^{m}(x)=\phi_{0}^{m}(x)=0$ and $\phi_{n+1}^{m}(x)=c_{n, 0}^{m}, n=0,1, \ldots, m$.
Proof: We prove that (5.6) holds for $n \geq m \geq 2$. If $n=m$, then

$$
\begin{aligned}
\phi_{m+1}^{m}(x) & =c_{m, 0}=p c_{m-1,0}-q c_{m-3,0} \\
& =p \phi_{m}^{m}(x)-q \phi_{m-2}^{m}(x)+x \phi_{0}^{m}(x) \quad\left(\phi_{0}(p, q ; x)=0\right)
\end{aligned}
$$

Assume now that $n \geq m+1$, then, by (2.0), we have

$$
\begin{aligned}
\phi_{n+1}^{m}(x) & =\sum_{k=0}^{[n /(m+1)]} c_{n-m k, k} x^{k}=c_{n, 0}+\sum_{k=1}^{[n /(m+1)]} c_{n-m k, k} x^{k} \\
& =p c_{n-1,0}-q c_{n-3,0}+\sum_{k=1}^{[n /(m+1)]}\left(p c_{n-1-m k, k}-q c_{n-m k-3, k}+c_{n-m k-1, k-1}\right) x^{k}(n-m k \geq 1) \\
& =p \sum_{k=0}^{[n /(m+1)]} c_{n-1-m k, k} x^{k}-q \sum_{k=0}^{[n /(m+1)]} c_{n-3-m k, k} x^{k}+x \sum_{k=0}^{[n /(m+1)]} c_{n-1-m k, k-1} x^{k-1} \\
& =p \sum_{k=0}^{[(n-1) /(m+1)]} c_{n-1-m k, k} x^{k}-q \sum_{k=0}^{[(n-3) /(m+1)]} c_{n-3-m k, k} x^{k}+x \sum_{k=0}^{[(n-1-m) /(m+1)]} c_{n-m-m k-1, k} x^{k} \\
& =p \phi_{n}^{m}(x)-q \phi_{n-2}^{m}(x)+x \phi_{n-m}^{m}(x) .
\end{aligned}
$$

Corollary 5.1: The coefficients $c_{n, k}^{m}$ satisfy the following relation,

$$
c_{n, k}^{m}=p c_{n-1, k}^{m}-q c_{n-3, k}^{m}+c_{n-1-m, k-1}^{m}, \quad m \geq 0, n \geq 2, n \geq m, k \geq 1
$$

where $c_{n, k}^{m}=c_{n, k}^{m}(p, q)$.
Corollary 5.2: For $m=2$, from (5.6), we have

$$
\begin{equation*}
\phi_{n}^{2}(x)=p \phi_{n-1}^{2}(x)+(x-q) \phi_{n-2}^{2}(x), \quad n \geq 2 \tag{5.7}
\end{equation*}
$$

with $\phi_{0}^{2}(x)=0, \phi_{n+1}^{2}(x)=c_{n, 0}^{1}=c_{n, 0}, n=0,1$.
Remark: For every $n \geq 1$, we have

$$
\begin{equation*}
\phi_{n}^{2}(p, q ; x)=\phi_{n}(p, x-q ; 0) \tag{5.8}
\end{equation*}
$$

Proof: By (1.0), the sequence $\left\{\phi_{n}(p, x-q ; 0)\right\}$ satisfies relation (5.7) with $\phi_{0}(p, q-x ; 0)=0$, $\phi_{1}(p, q-x ; 0)=1, \phi_{2}(p, q-x ; 0)=p$. From this and (5.7), we see that (5.8) holds for $n=1$ and $n=2$. If (5.8) holds for $n \leq m$, then for $n=m+1$ we get

$$
\begin{aligned}
\phi_{m+1}^{2}(p, q ; x) & =p \phi_{m}^{2}(p, q ; x)-(q-x) \phi_{m-2}^{2}(p, q ; x) \\
& =p \phi_{m}(p, q-x ; 0)-(q-x) \phi_{m-2}(p, q-x ; 0)=\phi_{m+1}(p, q-x ; 0)
\end{aligned}
$$

Using induction on n, we conclude that relation (5.8) holds for every $n \geq 1$. By (5.8), and from (2.9) with $k=0$, we get

$$
\begin{equation*}
\phi_{n+1}^{2}(p, q ; x)=\sum_{r=0}^{[n / 3]}\binom{n-2 r}{r}(x-q)^{r} p^{n-3 r} \tag{5.9}
\end{equation*}
$$

Special Cases

For $x=q$, by (5.9), we have

$$
\sum_{k=0}^{[n / 3]} q^{k} c_{n-k, k}^{1}(p, q)=p^{n}
$$

For $p=2$ and $q=1$, the last equality becomes

$$
\sum_{k=0}^{[n / 3]} c_{n-k, k}^{1}(2,1)=2^{n}
$$

For $p=0$, the polynomials $\phi_{n+1}^{2}(p, q ; x)$ have the following representations:

$$
\phi_{n+1}^{2}(0, q ; x)=(x-q)^{s}
$$

for $n=3 s$, and

$$
\phi_{n+1}^{2}(0, q ; x)=0
$$

for $n=3 s+1$ and for $n=3 s+2$.

6. GENERALIZATION

If we consider the general recurrence relation

$$
U_{n}(x)=(x+p) U_{n-1}(x)-q U_{n-2}(x)+r U_{n-3}(x), \quad n \geq 3
$$

we find that

$$
U_{n+1}(x)=\sum_{k=0}^{n} c_{n, k}(p, q, r) x^{k}
$$

where

$$
\sum_{n \geq 0} c_{n+k, k}(p, q, r) t^{n}=\left(1-p t+q t^{2}-r t^{3}\right)^{-(k+1)}
$$

In this case, we have $\alpha+\beta+\gamma=p, \alpha \beta+\alpha \gamma+\beta \gamma=q$, and $\alpha \beta \gamma=r$. Particularly, if $\alpha=\beta=$ $\gamma=p / 3$, then $q=p^{2} / 3$ and $r=p^{3} / 27$. So we get

$$
\sum_{n \geq 0} c_{n+k, k}(p, q, r) t^{n}=(1-\alpha t)^{-3(k+1)}=\sum_{n \geq 0}\binom{3 k+2+n}{3 k+2}(p / 3)^{n} t^{n}
$$

hence,

$$
c_{n, k}(p, q, r)=\binom{2 k+2+n}{3 k+2}(p / 3)^{n-k} .
$$

Thus, we can define $B_{n}^{1}(x)$, i.e., a generalization of Morgan-Voyce polynomials, by setting $\alpha=\beta=\gamma=1$ (i.e., $p=3, q=3, r=1$),

$$
B_{n}^{1}(x)=\sum_{k=0}^{n}\binom{n+2 k+2}{3 k+2} x^{k}
$$

ACKNOWLEDGMENT

The author wishes to thank the referee for his/her great patience in reading this manuscript. I also appreciate the referee's insightful comments that helped to improve the presentation of this paper.

REFERENCES

1. R. André-Jeannin. "A Note on a General Class of Polynomials." The Fibonacci Quarterly 32.5 (1994):445-54.
2. R. André-Jeannin. "A Generalization of Morgan-Voyce Polynomials." The Fibonacci Quarterly 32.3 (1994):228-32.
3. G. B. Đordevic. "Mixed Fermat Polynomials." The Fibonacci Quarterly 31.2 (1993):15257.
4. A. F. Horadam \& Br. J. M. Mahon. "Pell and Pell-Lucas Polynomials." The Fibonacci Quarterly 23.2 (1985):7-20.
5. A. F. Horadam. "Chebyshev and Fermat Polynomials for Diagonal Functions." The Fibonacci Quarterly 19.4 (1979):328-33.
AMS Classification Numbers: 11B39, 26A24, 11B83

\section*{| NEW EDITOR AND SUBMISSION OF ARTICLES |
| :--- |
| Starting March 1, 1998, all new articles must be submitted to: |
| PROFESSOR CURTIS COOPER |
| Department of Mathematics and Computer Science |
| Central Missouri State University |
| Warrensburg, MO 64093-5045 |
| e-mail: ccooper@cnc8851@cmsu2.cmsu.edu |
| Any article that does not satisfy all of the criteria as listed on the inside front cover |
| of the journal will be returned immediately. |}

