ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
Stanley Rabinowitz

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also be sent to the problem editor by electronic mail to stan@wwa.com on the Internet. All correspondence will be acknowledged.

Each solution should be on a separate sheet (or sheets) and must be received within six months of publication of the problem. Solutions typed in the format used below will be given preference. Proposers of problems should normally include solutions. Although this Elementary Problem section does not insist on original problems, we do ask that proposers inform us of the history of the problem, if it is not original. A problem should not be submitted elsewhere while it is under consideration for publication in this column.

BASIC FORMULAS

The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy

$$
\begin{aligned}
& F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1 \\
& L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1
\end{aligned}
$$

Also, $\alpha=(1+\sqrt{5}) / 2, \beta=(1-\sqrt{5}) / 2, F_{n}=\left(\alpha^{n}-\beta^{n}\right) / \sqrt{5}$, and $L_{n}=\alpha^{n}+\beta^{n}$.

PROBLEMS PROPOSED IN THIS ISSUE

B-848 Proposed by Russell Euler's Fall 1997 Number Theory Class, Northwest Missouri

 State University, Maryville, MOProve that $F_{n} F_{n+1}-F_{n+6} F_{n-5}=40(-1)^{n+1}$ for all integers n.

B-849 Proposed by Larry Zimmerman \& Gilbert Kessler, New York, NY

If F_{a}, F_{b}, F_{c}, x forms an increasing arithmetic progression, show that x must be a Lucas number.

B-850 Proposed by Al Dorp, Edgemere, NY

Find distinct positive integers a, b, and c so that $F_{n}=17 F_{n-a}+c F_{n-b}$ is an identity.

B-851 Proposed by Pentti Haukkanen, University of Tampere, Tampere, Finland

Consider the repeating sequence $\left\langle A_{n}\right\rangle_{n=0}^{\infty}=0,1,-1,0,1,-1,0,1,-1, \ldots$.
(a) Find a recurrence formula for A_{n}.
(b) Find an explicit formula for A_{n} of the form $\left(a^{n}-b^{n}\right) /(a-b)$.

B-852 Proposed by Stanley Rabinowitz, Westford, IMA

Evaluate

$$
\left|\begin{array}{lllll}
F_{0} & F_{1} & F_{2} & F_{3} & F_{4} \\
F_{9} & F_{8} & F_{7} & F_{6} & F_{5} \\
F_{10} & F_{11} & F_{12} & F_{13} & F_{14} \\
F_{19} & F_{18} & F_{17} & F_{16} & F_{15} \\
F_{20} & F_{21} & F_{22} & F_{23} & F_{24}
\end{array}\right| .
$$

B-853 Proposed by Gene Ward Smith, Brunswick, ME

Consider the recurrence $f(n+1)=n(f(n)+f(n-1))$ with initial conditions $f(0)=1$ and $f(1)=0$. Find a closed form for the sum

$$
\sum_{k=0}^{n}\binom{n}{k} f(k) .
$$

NOTE: The Elementary Problems Column is in need of more easy, yet elegant and nonroutine problems.

SOLUTIONS

Pattern Detective

B-832 Proposed by Andrew Cusumano, Great Neck, NY

 (Vol. 35, no. 3, August 1997)Find a pattern in the following numerical identities and create a formula expressing a more

$$
\begin{aligned}
& \text { general result. } \begin{aligned}
& 3^{5}+2^{5}+1^{5}+1^{5}=5 \cdot 3^{4}-128 \\
& 5^{5}+3^{5}+2^{5}+1^{5}+1^{5}=8 \cdot 5^{4}-128-2 \cdot 3 \cdot 5(19+2 \cdot 3 \cdot 5) \\
& 8^{5}+5^{5}+3^{5}+2^{5}+1^{5}+1^{5}=13 \cdot 8^{4}-128-2 \cdot 3 \cdot 5(19+2 \cdot 3 \cdot 5) \\
&-3 \cdot 5 \cdot 8(19+2 \cdot 3 \cdot 5+2 \cdot 5 \cdot 8) \\
& 13^{5}+8^{5}+5^{5}+3^{5}+2^{5}+1^{5}+1^{5}=21 \cdot 13^{4}-128-2 \cdot 3 \cdot 5(19+2 \cdot 3 \cdot 5) \\
&-3 \cdot 5 \cdot 8(19+2 \cdot 3 \cdot 5+2 \cdot 5 \cdot 8) \\
&-5 \cdot 8 \cdot 13(19+2 \cdot 3 \cdot 5+2 \cdot 5 \cdot 8+2 \cdot 8 \cdot 13) \\
& 21^{5}+13^{5}+8^{5}+5^{5}+3^{5}+2^{5}+1^{5}+1^{5}=34 \cdot 21^{4}-128-2 \cdot 3 \cdot 5(19+2 \cdot 3 \cdot 5) \\
&-3 \cdot 5 \cdot 8(19+2 \cdot 3 \cdot 5+2 \cdot 5 \cdot 8) \\
&-5 \cdot 8 \cdot 13(19+2 \cdot 3 \cdot 5+2 \cdot 5 \cdot 8+2 \cdot 8 \cdot 13) \\
&-8 \cdot 13 \cdot 21(19+2 \cdot 3 \cdot 5+2 \cdot 5 \cdot 8+2 \cdot 8 \cdot 13+2 \cdot 13 \cdot 21)
\end{aligned}
\end{aligned}
$$

Solution by H.-J. Seiffert, Berlin, Germany

Let k be an integer. Then $F_{k-2}\left(F_{k}^{2}+F_{k-1} F_{k+1}\right)=F_{k-2}\left(F_{k}^{2}+F_{k-1} F_{k}+F_{k-1}^{2}\right)=\left(F_{k}-F_{k-1}\right)\left(F_{k}^{2}+\right.$ $\left.F_{k-1} F_{k}+F_{k-1}^{2}\right)=F_{k}^{3}-F_{k-1}^{3}$. Using $F_{k-1} F_{k+1}-F_{k}^{2}=(-1)^{k}$, which is identity $\left(\mathrm{I}_{13}\right)$ of [1], we have

$$
F_{k-2}\left(2 F_{k}^{2}+(-1)^{k}\right)=F_{k}^{3}-F_{k-1}^{3} .
$$

Multiplying this equation by $F_{k-1} F_{k}$, adding F_{k}^{5} on both sides of the resulting equation, and using $F_{k}^{5}+F_{k-1} F_{k}^{4}=F_{k+1} F_{k}^{4}$, we obtain

$$
F_{k}^{5}+F_{k-2} F_{k-1} F_{k}\left(2 F_{k}^{2}+(-1)^{k}\right)=F_{k+1} F_{k}^{4}-F_{k} F_{k-1}^{4} .
$$

Summing as k ranges from 1 to n yields

$$
\begin{equation*}
\sum_{k=1}^{n} F_{k}^{5}=F_{n+1} F_{n}^{4}-\sum_{k=1}^{n} F_{k-2} F_{k-1} F_{k}\left(2 F_{k}^{2}+(-1)^{k}\right) \tag{1}
\end{equation*}
$$

From identity $\left(\mathrm{I}_{13}\right)$, again, we find

$$
F_{j}^{2}-F_{j-1}^{2}+(-1)^{j}=F_{j-1} F_{j+1}-F_{j-1}^{2}=F_{j-1} F_{j} .
$$

Summing as j ranges from 1 to k gives

$$
F_{k}^{2}+\frac{1}{2}\left((-1)^{k}-1\right)=\sum_{j=1}^{k} F_{j-1} F_{j} \quad \text { or } \quad 2 F_{k}^{2}+(-1)^{k}=1+2 \sum_{j=1}^{k} F_{j-1} F_{j}
$$

Now equation (1) may be rewritten as

$$
\sum_{k=1}^{n} F_{k}^{5}=F_{n+1} F_{n}^{4}-\sum_{k=1}^{n} F_{k-2} F_{k-1} F_{k}\left(1+2 \sum_{j=1}^{k} F_{j-1} F_{j}\right)
$$

Let $n \geq 4$. Using

$$
\sum_{k=1}^{4} F_{k-2} F_{k-1} F_{k}\left(1+2 \sum_{j=1}^{k} F_{j-1} F_{j}\right)=128 \quad \text { and } \quad 1+2 \sum_{j=1}^{4} F_{j-1} F_{j}=19
$$

we find

$$
\sum_{k=1}^{n} F_{k}^{5}=F_{n+1} F_{n}^{4}-128-\sum_{k=5}^{n} F_{k-2} F_{k-1} F_{k}\left(19+2 \sum_{j=5}^{k} F_{j-1} F_{j}\right)
$$

valid for all $n \geq 4$. For $n=4,5,6,7$, and 8 , this produces the numerical identities given in the proposal.
The proposer sent along many related identities.

Reference

1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, Calif.: The Fibonacci Association, 1979.

Also solved by Paul S. Bruckman, L. A. G. Dresel, and the proposer.

Newton Meets Lucas

B-833 Proposed by Al Dorp, Edgemere, NY

(Vol. 35, no. 3, August 1997)
For n a positive integer, let $f(x)$ be the polynomial of degree $n-1$ such that $f(k)=L_{k}$ for $k=1,2,3, \ldots, n$. Find $f(n+1)$.
Solution by Paul S. Bruckman, Highwood, IL
We employ the Pochhammer notation $x^{(m)}=x(x-1)(x-2) \cdots(x-m+1)$ and use Newton's Forward Difference Formula ([1], p. 29), which says that if f_{k} is a polynomial of degree n, then

$$
f_{k}=f_{0}+\frac{\Delta f_{0}}{1!} k^{(1)}+\frac{\Delta^{2} f_{0}}{2!} k^{(2)}+\cdots+\frac{\Delta^{n} f_{0}}{n!} k^{(n)}
$$

where the operator Δ is defined by $\Delta f(x)=f(x+1)-f(x)$.
In our example, $\Delta f(k)=f(k+1)-f(k)=L_{k+1}-L_{k}=L_{k-1}$ for $k=1,2, \ldots, n-1$. Similarly, $\Delta^{2} f(k)=\Delta(\Delta f(k))=\Delta L_{k-1}=L_{k-2}$ for $k=1,2, \ldots, n-2$. Continuing, we find $\Delta^{3} f(k)=L_{k-3}$ for $k=1,2, \ldots, n-3$, etc., until $\Delta^{n-1} f(1)=L_{2-n}$.

Applying Newton's formula, we obtain

$$
f(x+1)=\sum_{k=0}^{n-1} \frac{L_{1-k}}{k!} x^{(k)}=\sum_{k=0}^{n-1}(-1)^{k-1} L_{k-1} x^{(k)} / k!
$$

Then

$$
\begin{aligned}
f(n+1) & =\sum_{k=0}^{n-1}(-1)^{k-1}\binom{n}{k} L_{k-1} \\
& =\sum_{k=1}^{n-1}\binom{n}{k}\left[(-\alpha)^{k-1}+(-\beta)^{k-1}\right] \\
& =\beta(1-\alpha)^{n}+\alpha(1-\beta)^{n}-(-\alpha)^{n-1}-(-\beta)^{n-1} \\
& =\beta^{n+1}+\alpha^{n+1}+(-1)^{n}\left[\alpha^{n-1}+\beta^{n-1}\right] \\
& =L_{n+1}+(-1)^{n} L_{n-1}
\end{aligned}
$$

This is equivalent to L_{n} if n is odd and $5 F_{n}$ if n is even.

Reference

1. Ronald E. Mickens. Difference Equations. New York: Van Nostrand Reinhold, 1990.

Also solved by Charles K. Cook, L. A. G. Dresel, Hans Kappus, Harris Kwong, R. Horace McNutt, H.-J. Seiffert, Indulis Strazdins, and the proposer.

Radical Inequality

B-834 Proposed by Zdravko F. Starc, Vrsac, Yugoslavia

 (Vol. 35, no. 3, August 1997)For x a real number and n an integer larger than 1, prove that

$$
(x+1) F_{1}+(x+2) F_{2}+\cdots+(x+n) F_{n}<2^{n} \sqrt{\frac{n(n+1)(2 n+1+6 x)+6 n x^{2}}{6}}
$$

Solution by the proposer

From the identity $\alpha^{n}=\alpha F_{n}+F_{n-1}$, we see that for $n \geq 2$,

$$
F_{n}=\alpha^{n-1}-\frac{F_{n-1}}{\alpha}<\alpha^{n-1}<2^{n-1}
$$

Thus,

$$
\begin{equation*}
\sqrt{F_{n} F_{n+1}}<2^{n} \tag{*}
\end{equation*}
$$

Cauchy's Inequality ([1], p. 20) says that for all real numbers a_{i} and b_{i},

$$
\left(a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}\right)^{2} \leq\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+\cdots+b_{n}^{2}\right)
$$

Let $a_{i}=x+i$ and $b_{i}=F_{i}$. Then, using the facts

$$
\begin{gathered}
F_{1}^{2}+F_{2}^{2}+\cdots+F_{n}^{2}=F_{n} F_{n+1} \\
(x+1)^{2}+(x+2)^{2}+\cdots+(x+n)^{2}=\frac{n(n+1)(2 n+1+6 x)+6 n x^{2}}{6}
\end{gathered}
$$

and the inequality $(*)$, we obtain the desired inequality for all x for which the radicand is nonnegative.

Reference

1. D. S. Mitrinovic. Analytic Inequalities. Berlin: Springer Verlag, 1970.

Also solved by Paul S. Bruckman.

Cryptarithmic Identity

B-836 Proposed by Al Dorp, Edgemere, NY

(Vol. 35, no. 4, November 1997)
Replace each of W, X, Y, and Z by either F or L to make the following an identity:

$$
W_{n}^{2}-6 X_{n+1}^{2}+2 Y_{n+2}^{2}-3 Z_{n+3}^{2}=0
$$

Solution by L. A. G. Dresel, Reading, England
Putting $n=-1$, we find

$$
\begin{equation*}
W_{1}^{2}+2 Y_{1}^{2}=3\left(Z_{2}^{2}+2 X_{0}^{2}\right) . \tag{a}
\end{equation*}
$$

Putting $n=0$, we find

$$
\begin{equation*}
W_{0}^{2}+2 Y_{2}^{2}=3\left(Z_{3}^{2}+2 X_{1}^{2}\right) \tag{b}
\end{equation*}
$$

Since $F_{1}=L_{1}=1$, we have $W_{1}=Y_{1}=1$, so that (a) implies $3=3\left(Z_{2}^{2}+2 X_{0}^{2}\right.$), giving $X_{0}=F_{0}=0$ and $Z_{2}=F_{2}=1$. Substituting in (b) gives $W_{0}^{2}+2 Y_{2}^{2}=3\left(F_{3}^{2}+2 F_{1}^{2}\right)=18$, which requires $W_{0}=F_{0}=0$ and $Y_{2}=L_{2}=3$. Therefore, the required identity is

$$
F_{n}^{2}-6 F_{n+1}^{2}+2 L_{n+2}^{2}-3 F_{n+3}^{2}=0 .
$$

This is satisfied for $n=-1, n=0$, and also for $n=1$. Therefore, by the Verification Theorem of [1], this is an identity for all values of n.

Reference

1. L. A. G. Dresel. "Transformations of Fibonacci-Lucas Identities." In Applications of Fibonacci Numbers 5:169-84. Ed. G. E. Bergum, A. N. Philippou, \& A. F. Horadam. Dordrecht: Kluwer, 1993.
Also solved by Paul S. Bruckman, Charles K. Cook, Russell Jay Hendel, Daina A. Krigens, H.-J. Seiffert, Indulis Strazdins, and the proposer.

$\underline{\text { Polynomial Remainder }}$

B-837 Proposed by Joseph J. Koštál, Chicago, IL

(Vol. 35, no. 4, November 1997)
Let $P(x)=x^{1997}+x^{1996}+x^{1995}+\cdots+x^{2}+x+1$ and let $R(x)$ be the remainder when $P(x)$ is divided by $x^{2}-x-1$. Show that $R(x)$ is divisible by L_{999}.

Solution by L. A. G. Dresel, Reading, England

Consider, more generally, the polynomial

$$
P_{n}(x)=x^{2 n-1}+x^{2 n-2}+x^{2 n-3}+\cdots+x^{2}+x+1=\frac{x^{2 n}-1}{x-1}
$$

Then, if $R(x)$ is the remainder on dividing by $x^{2}-x-1$, we have the identity

$$
P_{n}(x)=\left(x^{2}-x-1\right) Q(x)+R(x),
$$

where $Q(x)$ is a polynomial in x. Putting $x=\alpha$, and using the fact that $\alpha^{2}-\alpha-1=0$, we find that $P_{n}(\alpha)=R(\alpha)$ and $P_{n}(\beta)=R(\beta)$. Hence, $\alpha^{2 n}-1=(\alpha-1) R(\alpha)$ and $\beta^{2 n}-1=(\beta-1) R(\beta)$. Now $\alpha-1=-\beta, \beta-1=-\alpha$, and $R(x)=A x+B$, where A and B are constants. Hence, $\alpha^{2 n}-1=$
$A-B \beta$ and $\beta^{2 n}-1=A-B \alpha$. Subtracting gives $(\alpha-\beta) F_{2 n}=B(\alpha-\beta)$, so that $B=F_{2 n}=F_{n} L_{n}$, while adding gives $L_{2 n}-2=2 A-B$. When n is odd, we have $L_{n}^{2}=\left(\alpha^{n}+\beta^{n}\right)^{2}=L_{2 n}-2=2 A-B$, whereas when n is even, we have $5 F_{n}^{2}=\left(\alpha^{n}-\beta^{n}\right)^{2}=L_{2 n}-2=2 A-B$. It follows that when n is odd, $R(x)$ is divisible by L_{n}, whereas when n is even, $R(x)$ is divisible by F_{n}.
Also solved by Charles Ashbacher, David M. Bloom, Paul S. Bruckman, Al Dorp, Russell Euler \& Jawad Sadek, Russell Jay Hendel, Hans Kappus, Harris Kwong, R. Horace McNutt, Bob Prielipp, H.-J. Seiffert, Indulis Strazdins, and the proposer.

Composite Linear Recurrence

B-838 Proposed by Peter G. Anderson, Rochester Institute of Technology, Rochester, NY (Vol. 35, no. 4, November 1997)
Define a sequence of linear polynomials, $f_{n}(x)=m_{n} x+b_{n}$, by the recurrence $f_{n}(x)=$ $f_{n-1}\left(f_{n-2}(x)\right), n \geq 3$, with initial conditions $f_{1}(x)=\frac{1}{2} x$ and $f_{2}(x)=\frac{1}{2} x+\frac{1}{2}$. Find a formula for m_{n}.

Extra credit: Find a formula for b_{n}.

Solution by Charles Ashbacher, Hiawatha, IA

We claim that $m_{n}=1 / 2^{F_{n}}$ for $n \geq 1$. The proof is by induction on n. For the basis step, we have the given initial conditions, showing that the result is true for $n=1$ and $n=2$. Now assume

$$
f_{k-1}(x)=\frac{1}{2^{F_{k-1}}} x+b_{1} \quad \text { and } \quad f_{k}(x)=\frac{1}{2^{F_{k}}} x+b_{2} .
$$

Then

$$
\begin{aligned}
f_{k+1}(x) & =\frac{1}{2^{F_{k}}}\left(\frac{1}{2^{F_{k-1}}} x+b_{1}\right)+b_{2}=\frac{1}{2^{F_{k}} 2^{F_{k-1}}} x+\frac{1}{2^{F_{k}}} b_{1}+b_{2} \\
& =\frac{1}{2^{F_{k}+F_{k-1}}} x+\frac{1}{2^{F_{k}}} b_{1}+b_{2}=\frac{1}{2^{F_{k+1}}} x+\frac{1}{2^{F_{k}}} b_{1}+b_{2}
\end{aligned}
$$

and the result follows for all n.
Bruckman receives extra credit for finding that

$$
b_{n}=\sum_{k=1}^{F_{n-1}} \frac{1}{2^{k \alpha\rfloor}} .
$$

Strazdins reports that this sequence is studied in [1].

Reference

1. H. W. Gould, J. B. Kim, \& V. E. Hoggatt, Jr. "Sequences Associated with t-ary Coding of Fibonacci's Rabbits." The Fibonacci Quarterly 15.4 (1977):311-18.
Also solved by Paul S. Bruckman, Charles K. Cook, L. A. G. Dresel, Russell Jay Hendel, H.-J. Seiffert, Indulis Strazdins, and the proposer.
Late solutions to problems B-821 through B-824 were received from David Stone.
Errata: In the solution to problem B-830 (Feb. 1998, p. 89), in the second line of the proof of part (b), the subscript 19.109 should be 19.108 in three places. On the first line of page 90 , " $n+1$ " should read " $n+a$ ".
