PALINDROMIC SEQUENCES FROM IRRATIONAL NUMBERS

Clark Kimberling
University of Evansville, 1800 Lincoln Ave., Evansville, IN 47722
(Submitted July 1996)

In this paper, a palindrome is a finite sequence $(x(1), x(2), \ldots, x(n))$ of numbers satisfying $(x(1), x(2), \ldots, x(n))=(x(n), x(n-1), \ldots, x(1))$. Of course, an infinite sequence cannot be a palin-drome-however, we shall call an infinite sequence $x=(x(1), x(2), \ldots)$ a palindromic sequence if for every N there exists $n>N$ such that the finite sequence $(x(1), x(2), \ldots, x(n))$ is a palindrome. If α is an irrational number, then the sequence Δ defined by $\Delta(n)=\lfloor n \alpha\rfloor-\lfloor n \alpha-\alpha\rfloor$ is, we shall show, palindromic.

Lemma: Suppose $\sigma=(\sigma(0), \sigma(1), \sigma(2), \ldots)$ is a sequence of numbers, and $\sigma(0)=0$. Let Δ be the sequence defined by $\Delta(n)=\sigma(n)-\sigma(n-1)$ for $n=1,2,3, \ldots$. Then Δ is a palindromic sequence if and only if there are infinitely many n for which the equations

$$
\begin{equation*}
F_{n, k}: \sigma(k)+\sigma(n-k)=\sigma(n) \tag{1}
\end{equation*}
$$

hold for $k=1,2, \ldots, n$.
Proof: Equations $F_{n, k}$ and $F_{n, k-1}$ yield $\sigma(k)+\sigma(n-k)=\sigma(n)=\sigma(k-1)+\sigma(n-k+1)$, so that the equations

$$
\begin{equation*}
E_{n, k}: \sigma(k)-\sigma(k-1)=\sigma(n-k+1)-\sigma(n-k) \tag{2}
\end{equation*}
$$

or

$$
\Delta(k)=\Delta(n-k+1)
$$

follow, for $k=1,2, \ldots, n$. Thus, if the n equations (1) hold for infinitely many n, then Δ is a palindromic sequence.

For the converse, suppose n is a positive integer for which the equations $E_{n, k}$ in (2) hold. The equations $E_{n, 1}, E_{n, 1}+E_{n, 2}, E_{n, 1}+E_{n, 2}+E_{n, 2}, \ldots, E_{n, 1}+E_{n, 2}+\cdots+E_{n, n}$ readily reduce to the equations $F_{n, k}$. Thus, if Δ is palindromic, then the equations $F_{n, k}$, for $k=1,2, \ldots, n$, hold for infinitely many n.

To see how a positive irrational number α can be used to generate palindromic sequences, we recall certain customary notations from the theory of continued fractions. Suppose α has continued fraction $\llbracket a_{0}, a_{1}, a_{2}, \ldots \rrbracket$, and let $p_{-2}=0, p_{-1}=1, p_{i}=a_{i} p_{i-1}+p_{i-2}$ and $q_{-2}=1, q_{-1}=0$, $q_{i}=a_{i} q_{i-1}+q_{i-2}$ for $i \geq 0$. The principal convergents of α are the rational numbers p_{i} / q_{i} for $i \geq 0$. Now, for all nonnegative integers i and j, define $p_{i, j}=j p_{i+1}+p_{i}$ and $q_{i, j}=j q_{i+1}+q_{i}$. The fractions

$$
\begin{equation*}
\frac{p_{i, j}}{q_{i, j}}=\frac{j p_{i+1}+p_{i}}{j q_{i+1}+q_{i}}, \quad 1 \leq j \leq a_{i+2}-1, \tag{3}
\end{equation*}
$$

are the $i^{\text {th }}$ intermediate convergents of α. As proved in [2, p. 16],

$$
\begin{equation*}
\cdots<\frac{p_{i}}{q_{i}}<\cdots<\frac{p_{i, j}}{q_{i, j}}<\frac{p_{i, j+1}}{q_{i, j+1}}<\cdots<\frac{p_{i+2}}{q_{i+2}}<\cdots \text { if } i \text { is even, } \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\cdots>\frac{p_{i}}{q_{i}}>\cdots>\frac{p_{i, j}}{q_{i, j}}>\frac{p_{i, j+1}}{q_{i, j+1}}>\cdots>\frac{p_{i+2}}{q_{i+2}}>\cdots \text { if } i \text { is odd, } \tag{5}
\end{equation*}
$$

and $p_{i, j-1} q_{i j}-p_{i j} q_{i, j-1}=(-1)^{j}$ for $i=0,1,2, \ldots$ and $j=1,2, \ldots, a_{i+2}-1$. If the range of j in (3) is extended to $0 \leq j \leq a_{i+2}-1$, then the principal convergents are included among the intermediate convergents. We shall refer to both kinds simply as convergents-those in (4) as even-indexed convergents and those in (5) as odd-indexed convergents.

We shall use the notation (()) for the fractional-part function, defined by $((x))=x-\lfloor x\rfloor$.
Theorem 1: Suppose p / q is a convergent to a positive irrational number α. Then for $k=1,2$, $\ldots, q-1$, the sum $((k \alpha))+(((q-k) \alpha))$ is invariant of k; in fact,

$$
((k \alpha))+(((q-k) \alpha))= \begin{cases}((q \alpha))+1 & \text { if } p / q \text { is an even-indexed convergent } \\ ((q a)) & \text { if } p / q \text { is an odd-indexed convergent. }\end{cases}
$$

Proof: Suppose p / q is an even-indexed convergent and $1 \leq k \leq q-1$. Then $p / q<\alpha$, so that

$$
\begin{equation*}
k p / q<k \alpha \tag{6}
\end{equation*}
$$

Suppose there is an integer h such that $k p / q \leq h<k \alpha$. Then

$$
\begin{equation*}
p / q<h / k<\alpha . \tag{7}
\end{equation*}
$$

However, as an even-indexed convergent to α, the rational number p / q is the best lower approximate (as defined in [1]), which means that $k \geq q$ in (7). This contradiction to the hypothesis, together with (6), shows that

$$
\begin{equation*}
((k p / q))<((k \alpha)) . \tag{8}
\end{equation*}
$$

Since $1 \leq q-k \leq q-1$, we also have $1=((k p / q))+(((q-k) p / q))<((k \alpha))+(((q-k) \alpha))$. Since $((k \alpha))+(((q-k) \alpha))$ has the same fractional part as $q \alpha$, we conclude that

$$
((k \alpha))+(((q-k) \alpha))=((q \alpha))+1 .
$$

The proof for odd-indexed convergents p / q is similar and omitted.
Theorem 2: Suppose $\Delta(n)=\lfloor n \alpha\rfloor-\lfloor(n-1) \alpha\rfloor$ for some positive irrational number, for $n=1,2$, $3, \ldots$. Then Δ is a palindromic sequence.

Proof: By Theorem 1, if p / q is an odd-indexed convergent to α, then

$$
((k \alpha))+(((q-k) \alpha))=((q \alpha)) \text { for } k=1,2, \ldots, q-1,
$$

and clearly this holds for $k=q$, also. Consequently,

$$
\begin{gathered}
\lfloor k \alpha\rfloor+\lfloor(q-k) \alpha\rfloor=\lfloor q \alpha\rfloor, \\
\sigma(k)+\sigma(q-k)=\sigma(q),
\end{gathered}
$$

for $k=1,2, \ldots, q$. By the lemma, Δ is a palindromic sequence.
Example 1: There is only one positive irrational number for which all the convergents are principal convergents, shown here along with its continued fraction:

$$
\alpha=(1+\sqrt{5}) / 2=\llbracket 1,1,1, \ldots \rrbracket .
$$

The convergents are quotients of consecutive Fibonacci numbers, and the sequence σ given by $\sigma(n)=\lfloor n \alpha\rfloor$ begins with $0,1,3,4,6,8,9,11,12,14,16,17,19,21,22,24,25,27,29,30,32$, $33,35,37,38,40$, so that the difference sequence Δ begins with $1,2,1,2,2,1,2,1,2,2,1,2,2$, $1,2,1,2,2,1,2,1,2,2,1,2$. The sequence Δ is palindromic, since $(\Delta(1), \ldots, \Delta(q))$ is a palindrome for

$$
q \in\{1,3,8,21,55,144,377,987, \ldots\}
$$

Moreover, $(\Delta(2), \ldots, \Delta(q-1))$ is a palindrome for

$$
q \in\{2,5,13,34,89,233,610, \ldots\} .
$$

In both cases, Fibonacci numbers abound
Example 2: For $\alpha=e$, approximately 2.718281746 , the continued fraction is

$$
\llbracket 2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1, \ldots \rrbracket \text {, }
$$

and the first twenty convergents (both principal and intermediate) are:

$$
\begin{array}{rlrl}
2 / 1 & =p_{00} / q_{00} & 106 / 39 & =p_{60} / q_{60} \\
3 / 1 & =p_{10} / q_{10} & 193 / 71 & =p_{70} / q_{70} \\
5 / 2 & =p_{01} / q_{01} & 299 / 110 & =p_{61} / q_{61} \\
8 / 3 & =p_{20} / q_{20} & 492 / 181 & =p_{62} / q_{62} \\
11 / 4 & =p_{30} / q_{30} & 685 / 252 & =p_{63} / q_{63} \\
19 / 7 & =p_{40} / q_{40} & 878 / 323 & =p_{64} q_{64} \\
30 / 11 & =p_{31} / q_{31} & 1071 / 394 & =p_{65} / q_{65} \\
49 / 18 & =p_{32} / q_{32} & 1264 / 465 & =p_{80} / q_{80} \\
68 / 25 & =p_{33} / q_{33} & 1457 / 536 & =p_{90} / q_{90} \\
87 / 32 & =p_{50} / q_{50} & 2721 / 1001 & =p_{81} / q_{81}
\end{array}
$$

Here, Δ begins with $2,3,3,2,3,3,3,2,3,3,2,3,3,3,2,3,3,2,3,3,3,2,3,3,2,3,3,3,2,3$, 3,2 , and $(\Delta(1), \ldots, \Delta(q))$ is a palindrome for

$$
q \in\{1,4,11,18,25,32,71,536, \ldots\}
$$

and $(\Delta(2), \ldots, \Delta(q-1))$ is a palindrome for

$$
q \in\{2,3,7,39,110,181,252,323,394,465,1001, \ldots\}
$$

Opportunities: The foregoing theorems and examples suggest the problem of describing all the palindromes within the difference sequence Δ given by $\Delta(n)=\lfloor n \alpha\rfloor-\lfloor n \alpha-\alpha\rfloor$ for irrational α. One might then investigate what happens when $n \alpha$ is replaced by $n \alpha+\beta$, where β is a real number.

REFERENCES

1. Clark Kimberling. "Best Lower and Upper Approximates to Irrational Numbers." Elemente der Mathematik 52 (1997):122-26.
2. Serge Lang. Introduction to Diophantine Approximations. Reading, Mass.: Addison-Wesley, 1966.

AMS Classification Numbers: 11J70, 11B39

