
OBTAINING DIVIDING FORMULAS n\Q(ri) FROM ITERATED MAPS 

Chyi-Lung Lin 
Department of Physics, Soochow University, Taipei, Taiwan, 111, R.O.C. 

{SubmittedMay 1996-Final Revision October 1997) 

1. INTRODUCTION 

In this work we show that we may use iterated maps to understand and generate a dividing 
formula n\Q(n), where n is any positive integer. A well-known example of a dividing formula 
concerning Fibonacci numbers, for instance, is 

n\(Fn+x+Fn_x-\), (1.1) 

where n is a prime and Fn is the /?* Fibonacci number. 
We will show that from iterated maps we have a systematic way to construct functions Q(n) 

such that n\Q{ri). In this paper, we show how to derive the above dividing formula from an 
iterated map. We also generalize the result to the case in which /? is any positive integer and to 
the case of Fibonacci numbers of degree m. We begin with Theorem 2.1 below. 

2. THE FUNDAMENTAL THEOREM: n\N(n) 

Theorem 2.1: For an iterated map, 
n\N(n), (2.1) 

where N(n) is the number of period-?? points for the map. 

Proof: If N(ri) - 0, formula (2.1) is obvious. If N(n) ^ 0, then the orbit of a period-/? point 
is an /i-cycle containing n distinct period-/? points. Since there are no common elements in any 
two distinct /?-cycles, N{ri) must be a multiple of/?, i.e., n\N(ri), and N{n)ln is an integer repre-
senting the number of /?-cycles for the map. 

As a consequence of this fundamental theorem, each iterated map, in principle, offers a 
desired Q(n) function such that n\Q(ri), where Q(n)= N{n), the number of period-/? points of an 
iterated map. Therefore, we have an additional way to understand the dividing formula n\Q(n) 
from the point of view of iterated maps. 

3. THE N(n) OF AN ITERATED MAP 

For a general discussion, we consider a map f(x) in some interval. The fixed points off are 
determined from the formula 

/ (*) = *• (3-1) 
The number of fixed points for/can be determined from the number of intersections of the curve 
y - f(x) with the diagonal line y = x in the interval. We define fW(x) for the w* iterate of x for 
/ , then f{n\x) = f(f[n~l](x)). We should distinguish a fixed point of f[n\ and a period-/? point of 
/ The fixed points of / M are determined from the formula fl"\x) = x; however, the period-/? 
points of/are determined from the following two equations: 
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f[n](x) = x, (3.2) 

fi\x)*x for/ = l,2,...,/?-!. (3.3) 

We need (3.3) because an x satisfying only (3.2). is not necessarily a period-/? point off since it 
could be a fixed point of/or, in general, a period-//? point of/, where m < n and m\n. Formulas 
(3.2) and (3.3) together ensure that x is a period-/? point of/ Then N(ri) represents the number 
of points satisfying both (3.2) and (3.3). We let N^(n) represent the number of points satisfying 
only (3.2); hence, JV£(w) represents the number of fixed points for f[n]. Accordingly, we have 

d\n 

where the sum is over all the divisors of/? (including 1 and n). N^(n) is simply determined from 
intersections of the curve y = f[n\x) with the diagonal line. Therefore, what we obtain directly 
from an iterated map is not N(n) but N^(n). We need a reverse formula expressing N(n) in 
terms of N%(d). This has already been done, because we know the following two formulas from 
[2] and [7]: 

tfi(") = 2X<*X (3-4) 
d\n 

and 
N{n) = ^M(p'd)N^d) ^juidWxin/dl (3.5) 

d\n d\n 

where ju(d) is the Mobius function. N%(ri) is called the Mobius transform of N(ri), and N(n) is 
the inverse Mobius transform of N^(n). Hence, after calculating the N^Qi) of an iterated map, 
we obtain a dividing formula n\N(n) from (3.5). There are examples of iterated maps for which 
Nx(ri) are calculated (see [1], [5]). We summarize these in the following theorem. 

Theorem 3.1: For an iterated map, 

n\N(n), with N(n) = X ^ 7 d ) ^ { d ) (3.6) 
d\n 

and, especially, 
n\{Nz{n)-N^{\)) for/? a prime. (3.7) 

4. APPLICATIONS 

We consider the B{fi\ x) map defined by 
[tix f o r0<x< l /2 , 

B(u;x) = i (4.1) 
W ; [//(*-1/2) f o r l / 2 < x < l , \ . J 

where ju is the parameter whose value is restricted to the range 0 < ju < 2 so that an x in the 
interval [0,1] is mapped to the same interval. We now have the following theorem. 

Theorem 4,1: Line segments in B^n\ju; x) are all parallel with slope jun. 

Proof: In the beginning, for a given ju, B(ju;x) contains two parallel line segments with 
slope ju. From (4.1), we see that each line segment will multiply its slope by a factor ju after one 
iteration. Q.E.D. 
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We consider the following cases. 

4,1 The Case in Which JC = 1/ 2 Is a Period-2 Point 

If x = 1 / 2 is a period-2 point of the B(ju) map, it requires that B2(ju,l/2) = l/2. This then 
requires that ju>\ and ju2-ju-l = 0. Solving this, we have // = (1 + V 5 ) / 2 « 1 6 1 8 , the well-
known golden mean. We denote this ju by I 2 , indicating that for this parameter value x = 1/2 is 
a period-2 point. To obtain N^(n), we need to count the number of line segments in B^n\ju) that 
intersect the diagonal line. Detailed discussions of this map can be seen in [3] and [4]. Briefly, 
we see that starting from x0 = 1/2, we have a 2-cycle, {x0, xx}, where xx - ju/2. It follows that 
there are two types of line segments. We denote by Z the type of line segments connecting points 
(xa, 0) and (xb,ju/ 2) with 0 < xa < xb < 1, and denote by S the type of line segments connecting 
points (xc, 0) and (xd,l/ 2) with 0 < xc < xd < 1. Since x0 -» xx and x} -» x0 under an iteration, it 
follows that the behavior of line segments of these two types under iteration is 

L-+L + S and S-+L. (4.2) 

Using the symbols Z and S, we see that the graph of B(ju) contains two Z. (4.2) shows how the 
number of line segments increases under the action of iteration. Let L(n) and S(n) be the number 
of line segments of type Z and S in B^n\ju), respectively. (4.2) shows simply that each Z is from 
previous Z and S, $oL(n) = L(n -1) + S(n - 1 ) , and each S is from previous Z, so S(n) - L(n -1). 
From these, we conclude that L(n) = L(n -1) + L(n - 2) and S(n) = iS(w -1) + iS(w - 2). That is, 
L(ri) and £(?2) are both the type of sequences of which each element is the sum of its previous 
two elements. Starting with an Z, according to (4.2), the orbit of which is 

L -> LS -> 2LS -> 3L2S -> 5Z3S -> 815^ -> • • •, 

we easily see that L{ri) = Fn and S(ri) = Fn_l. In conclusion, starting from an L, under the action 
of iteration there are F„ (L-type) and S(n) (S-typ6) parallel line segments generated in B^n\ju). 
We will use this result. Nz(n) is then determined from the number of intersections of these line 
segments with the diagonal line. 

Consider first the iS-type line segments. We note that all 5-type line segments in B[n\fi) are 
parallel and can be divided into two parts, one part in the range 0 < x < 1 / 2 and the other in the 
range 1 / 2 < x < 1. We easily see that each line segment in the range 0 < x < 1 / 2 intersects the 
diagonal line once, and others in the range 1 / 2 < x < 1 cannot intersect the diagonal line. The 
original line segment in the range 0< x < 1/2 is an Z,, so the number of S-type line segments in 
BW(ju) in this range is S{n) = Fn_v 

Consider next the L-type line segment. Similarly, line segments of this type in B^n\ju) are 
parallel, and each of those that is in the range 0<x< /J/2 intersects the diagonal line once. 
Others in the range jul2<x<\ cannot intersect the diagonal line. We divide the range 0 < x < 
ju/2 into 0 < x < 1/2 and l/2<x<ju/2. The original line segment in the range 0 < x < 1 / 2 is 
an Z, so the number of Z-type line segments in B^n\ju) in this range is L(n) - Fn. Next, the origi-
nal line segment in the range l / 2 < x < / / / 2 i s a n A S ' . After one iteration, S-^ L; the L in the 
right-hand side, after n -1 iterations, generates all the Z-type line segments in B^n\ju) in this 
range, the number of which is therefore L{n -1) = Fn_l. 

In all, the total number of intersections of line segments of types Z and S with the diagonal 
line is thus Fn_l + Fn + Fn_x - Fn+l + Fn_v We conclude that 
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Nz(n) = Fn+l + F„_, = F„ + 2Fn_v (4.3) 
Nz(ri) is, in fact, the Lucas number Ln. From (3.6) and (3.7), we have 

n\N{n), with#(») = X / < " / ^ + i + iVi) (4.4) 
d\n 

and 
n\{Fn+x + Fn_x-X), for n a prime. (4.5) 

Formula (4.5) Is also a known result [6]; however, we see that it is traceable from the point of 
view of iterated maps. 

For n a composite number, (4.4) offers additional relations for Fibonacci numbers or Lucas 
numbers. This result seems to be a new one. Consider, as a simple example, taking n = 12; since 
#(12) = 300, we can easily check that 121300. 

4.2 The Case In Which JC = 1/ 2 Is a Perlod-#i Point 

We now consider the general case in which x = 1 / 2 is a period-/w point. In general, there are 
many values of ju in the range 0 < ju < 2 such that x = 1 / 2 is a period-m point. If there are k such 
parameter values, we denote these by fil<£i2

< M3<"' <Mk =^m- We will choose the largest 
one as the parameter value, i.e., ju = Zm. It follows that Ew satisfies the equation: 

m-\ 
• I 

;=0 

/ / " - £ / / = ( ) . (4.6) 

For instance, we have E3 = 1.839, E4 = 1.9276. We refer the reader to [4] for details. Briefly, we 
see that, starting from x0 = 1/2, we have an w-cycle, {x0, x1?..., xm_x}, where xt = f^(x0) is the 
Ith iterate of xQ. It is convenient also to define xm = x0. We have, for instance, xx = (1/2)//, and 
from (4.6) we have xl = (1 /2)(1 +1 / /i +1 / /i2 + ••• + !/ ff1"1). We list all the values of xt in this 
way: 

x1-( l /2)( l + l / / i + l / / i 2 + .-- + l//iw-1), 
x2 = (l/2)(l + l / / i + l / / / 2 + - + l///w-2), 

C 2 = (l/2)(l + l / / / + l//i2), ( 4 ' ? ) 

xm_x = (l/2)(l-fl / / /) , 
xm = x0 = l/Z 

We see that xx > x2 > x3 > • • • > x ^ > xm. It follows that there are m types of line segments. We 
denote by Lt the type of line segments connecting points (xa,0) and (x^x,), where 0<xa< 
xb<l and 1 < / < m. The behavior of line segments of these types after one iteration is 

Z^-^JLJ + 1,2, 

Lm_l —> Ll + Lmy 

^2~^A + 3̂> M g ) 

and 

4 , - > £ p (4-9) 
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We note that Lm (or L0) is the only type of line segment that does not break into two line seg-
ments after one iteration. The original graph of B(ju) contains two Lx. Equations (4.8) and (4.9) 
show how the number of line segments increases under the action of iteration. Let Lt{n) be the 
number of line segments of type Lt in B[n](ju), then (4.8) and (4.9) show that 

L2(n) = Ll(n-l), 
L3(n) = L2(n-l) = Ll(n-2X 
L4(n) = L3(n-l) = Ll(n-3X 

A » = Lm-M ~ 1) = Li(n -m + l), 
or 

Z/.(/i) = i/._1(w-l) = Z1(w-7 + l), for2<j<m, (4.10) 

and especially, 
m m 

It follows that all these Lt{n) are sequences of the following type: 
m 

AW = SA("-.A l^iZm, (4.12) 

i.e., each element of which is the sum of its previous m elements. Starting with an Zj, according 
to (4.8) and (4.9), the orbit of Lx is Lx -» LXL2 -> 2LXL2L3 ->•••. We see that Lx{n) = F^m\ the 
Fibonacci numbers of degree m, whose definition is 

m 
pirn) _ V^ p{m) 

with the first m elements defined by 
Fx

(m) = l and F^ = 2l~2 for 2 <i<m. (4.13) 

Conventionally, we define Fjm) = 0 for j < 0. 
We conclude that, starting from an Z1? we have Lx(n) - F^m) and, in general, Lt{ri) = F£$+l, 

where \<i<m. In order to discuss the number of intersections of these line segments with the 
diagonal line, we need to know, starting from an Za-type line segment, how many Z^-type line 
segments there are in B^n\ju). We let Lb(n, La) represent the number of Z^-type line segments 
generated after n iterations of a starting line segment La. Using this notation, we have 

Lb(n,Lx) = F^+l, (4.14) 

and we have the following theorem. 
m-a 

Theorem 4.2: 4(w, La) = Y*Fn-b-s> w h e r e l<a,b<m. 

Proof: We will prove this theorem by induction. We start from a line segment La and 
calculate the number of Z^-type line segments generated after n iterations of La. Consider first 
La = Lm. To calculate Z^w, Zm), we note that after one iteration we have Lm-> Lx. The Lx in 
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the right-hand side, after n-\ iterations, generates all the Z^-type line segments in B^n\/u) in this 
range, the number of which is Lb{n - 1 , Zx). Using (4.14), we conclude that 

m-a 
Lb(n,LJ = Lb(n-l,Ll) = F^ = Y.Fn

(-L, w h e r e a s . (4.15) 
.9=0 

Consider next La = Lm_l. After one iteration, Lm_x -> Ly + Lm. The Lx and Lm in the right-hand 
side, after n-1 iterations, generate all the 4 -type line segments in B[n\/u) in this range, the num-
ber of which is I^in -1, Z^ + Lb(n -1, Lm). Using (4.14) and (4.15), we conclude that 

Lb(n,LJ = lb(n-l,L1) + Lb(n-l,Lm) 
m-a (A 15) 

= 4(-l}+4(-t i = l 4 ( - t s , wherea = /W-l. ^ ; 

s=0 

We can now prove the general case by induction. Consider La = Z^. , and suppose that 
m-a 

Lb(n, 4 ) = I4 ( -"L, wherea = m-/ . (4.17) 

Now consider La = Z ^ ^ . After one iteration, Z ^ ^ -> Ly + L^. The Zj and Zw_? in the right-
hand side, after n-\ iterations, generates all the Z^-type line segments in B^n\ju) in this range, 
the number of which is 1^ (n -1, Zj) + Ẑ  (n - 1 , Zw_y). Using (4.14) and (4.16), we conclude that 

Lb(n, La) = 4(/i - 1 , Zj) + 4(/i - 1 , V / ) 

= 4(-t + l 4 ( - t , - i = X4(-"L, wherea = i « - / - L Q.E.D. 

With Theorem 4.2 established, we can now discuss the intersections of line segments of these 
w-types in B^n\fj) with the diagonal line. 

We consider line segments of type Ẑ  in B^n\fi). All these line segments are parallel and can 
be divided into two parts; one part is in the range 0 < x < xb, the other is in the range xb < x < 1. 
We easily see that each line segment of those in the range 0 < x < xb intersects the diagonal line 
once and others in the range xb < x < 1 cannot intersect the diagonal line. We divide the range 
0<x<xb into 0 < x < l / 2 and l/2<x<xb. 

Consider first the range 0 < x < 1/2. The original line segment in this range is an Lx. The 
number of line segments of type Lb in B[n](ju; x) in this range is Lh(n, Ly) = F^+l. 

Consider next the range 1 / 2 < x < xb. The original line segment in the range 1 / 2 < x < xb is 
Z^+1. The number of Z^-type line segments in B[n](ju) in this range is Lb(n, Lb+1) - H™=o~lFn-b-s-

Therefore, the total number of intersections of these w-type line segments with the diagonal 
line is 

m m m-b-l 

b=\ 

m-b-l 

s=0 
1 n-b+l T Z**J n-b-s 

b=\ b=\ s=0 

m-\ m-\ m-\ 

= M-1 + 1 *#S = £(* + l)m (4.19) 
b=0 k=l fe=0 

sZ$">. (4.20) 
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/£ , defined above, may be called the Lucas numbers of degree m, whose definition is 
m 

4W) = X 4-y > w i t h t h e first m elements defined by 

4 w ) = 2 i - l , \<i<m. (4.21) 

We then have the final results: 
Nz(n) = Ln(m), (4.22) 

w|tf(«), withiV(^)-X^/rf)4W)' (4-23) 
d\n 

and 
w|(4w) -1), for n a prime. (4.24) 

5. CONCLUSIONS 

Many N(n) such that n\N(n) can be obtained in this way for other iterated maps. In prin-
ciple, infinite N(n) can be obtained, since each iterated map contributes an N(n). It seems that 
the existence of dividing formulas is not so rare and not so mysterious. 
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