
SOME PROPERTIES OF GENERALIZED PASCAL SQUARES 
AND TRIANGLES* 
Richard L. OHertoo 

University of Western Sydney, Nepean, 2747, Australia 

Anthony G. Shannon 
University of Technology, Sydney, 2007, Australia 

{SubmittedMarch 1996-Final Revision February 1997) 

1. INTRODUCTION 

Four properties, related to columns, column sums, diagonal sums, and determinants, will be 
considered for 
(a) the "Pascal square" recurrence relation and its variations, 
(b) the "Pascal triangle" recurrence relation and its variations, and 
(c) more general recurrence relations which admit these properties. 

Associated basic linear recursive sequences are also outlined. Other research may be found in 
Bollinger [2], Philippou & Georghiou [9], and Carlitz & Riordan [4] who discuss the recurrence 
relation (2.1) in depth, but with different boundary conditions. In the following, {£} represents 
the entry in the nxh row, p^ column of a square array. 

2. GENERALIZED PASCAL SQUARES 

Bondarenko [3] presents an extremely useful collation of the myriad results concerning 
Pascal triangles and their generalizations. We attempt to provide additional insights and unifi-
cation of some of these by considering properties of square arrays in which the entries are 
governed by linear partial recurrence relations of a particular form. A number of illustrative cases 
are given followed by more general results. 
2.1 Case 1: The Pascal Square and Variations 

The Pascal array in Table 1 is formed by the use of the recurrence relation 

feHVR-i} <"a,^0) (21) 
with 

1 ^ = 0 (»>0), {°} = 1(/7>1), and {°} = 1. 

This is clearly just a rotation of the usual Pascal triangle. We highlight four properties, some well 
known, which will be generalized. 

* This paper, presented at the Seventh International Research Conference held in Graz, Austria, in July 1996, was 
scheduled to appear in the Conference Proceedings. However, due to limitations placed by the publisher on the 
number of pages allowed for the Proceedings, we are publishing the article in this issue of The Fibonacci Quarterly 
to assure its presentation to the widest possible number of readers in the mathematics community. 
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TABLE 1 
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3 
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. Pascal1 s 

4 

1 

5 

15 

35 

70 

126 

210 

330 

495 

5 

1 

6 

21 

56 

126 

252 

462 

792 

1287 

Square 

6 

1 

7 

28 

84 

210 

462 

924 

1716 

3003 

7 

1 

8 

36 

120 

330 

792 

1716 

3432 

6435 

8 

1 

9 

45 

165 

495 

1287 

3003 

6435 

12870 

Property 1 (Columns): The form of the recurrence relation implies that first differences by col-
umn give entries in the previous column. As the 0th column is constant, entries in the p^ column 
are given by the /?* order polynomial in n which interpolates the first (or any consecutive) p +1 
entries in that column 

In this case, since {n
p} = ("¥), the polynomial is (n + p)(n + p -1) ... (n +1) / p!. 

Property 2 (Column Sums): For n>\ and p>0, 

For the Pascal square, 

§{p}=L»+i}' 
which is better known as the combinatorial identity 

X^(i + P\(n + p+l 
7=0 p + l 

Property 3 (Diagonal Sums): Let the «* diagonal sum be 

1=0 ^ J 

then, for « > 1 , 

<tn-<*n-i „-!_„-;-, = 1 
/=0 

="i{r-H 
;=0 ^ J I . 

+ < 
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and so 

-Sm-{.0-.H9 
=4.-l-{«-l}+{"}' 

(2.2) 

In this case, dn - 2dn_l = 2" (as rf0 = 1) as expected. 

Property 4 (Determinants): Let 

\a,b) 

denote the square array of given entries with a<(n,p)<b, then, taking determinants and using 
elementary determinantal row operations: 

J(0,/H) 

[01 

lor 
0 

J(l,m) 

{o} 

M [fc}-M 
{oj-fo1} 

- ft 

© 
1(1, m) 

W] (by use of the recurrence relation) 

{*/4J^*-4 m) 

WH 
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Thus, all square sub-arrays of the Pascal array with top-left comer {§} = 1 are unimodular. 

Property 5 (Generalizations): The derivations of Properties 1-4 rely (if at all) only on the left-
hand (p = -l) zero boundary conditions. They thus apply to the Pascal array generalized by 
arbitrary top-row entries and hence to left-justified sub-arrays of the Pascal square. In particular, 
all square sub-arrays of the Pascal array with left side in the p = 0 column (or, by symmetry, top 
row in the n = 0 row) are unimodular, as noted by Bicknell & Hoggatt [1] for the simple Pascal 
array. 

Two examples, formed by varying the top row (n = 0) boundary conditions, follow. 

Case 1,.Example 1 (Vietafs Array): Using (2.1) with {°p} = 2 (jp > 1) gives the array in Table 2. 
Applying Properties 1-5, one need only interpolate a p^-order polynomial to jp + 1 (consecutive) 
entries of the p^ column to determine the column; column sums are as indicated for the Pascal 
array (p > 1); diagonal sums obey dn = 2dn_x = 3 • 2""1 (as dx - 3) and all (left-justified) square 
sub-arrays are unimodular. This is known as Vieta's array [10]. 

TABLE 2, Vietafs Array 

1 2 
1 3 
1 4 
1 5 
1 6 
1 7 
1 8 
1 9 
1 10 

2 
5 
9 
14 
20 
27 
35 
44 
54 

2 
7 
16 
30 
50 
77 
112 
156 
210 

2 
9 
25 
55 
105 
182 
294 
450 
660 

2 
11 
36 
91 
196 
378 
672 
1122 
1782 

2 
13 
49 
140 
336 
714 
1386 
2508 
4290 

2 
15 
64 
204 
540 
1254 
2640 
5148 
9438 

2 
17 
81 
285 
825 
2079 
4719 
9867 
19305 

Case 1, Example 2 (A Fibonacci Array): Similar results hold for the array in Table 3, which is 
(2.1) with {°p} = Fp+l (p>0), except now the /?* column sum is {Pli} = Fp, while diagonal sums 
obey dn = 2dn__x + Fn_x = 2» + Z ^ l^F^. 

Again, by Property 5, all (left-justified) square sub-arrays are unimodular. 

TABLE 3, Fibonacci Array of Case 1, Example 2 

1 
1 
1 
1 
1 
1 

1 
2 
3 
4 
5 
6 

2 
4 
7 
11 
16 
22 

3 
7 
14 
25 
41 
63 

5 
12 
26 
51 
92 
155 

8 
20 
46 
97 
189 
344 

13 
33 
79 
176 
365 
709 

21 
54 
133 
309 
674 
1383 

34 
88 
221 
530 
1204 
2587 

1 7 29 92 247 591 1300 2683 5270 
1 8 37 129 376 967 2267 4950 10220 
1 9 46 175 551 1518 3785 8735 18955 

2.2 Case 2: The Pascal Triangle and Variations 
The Pascal triangle array in Table 4 is formed by use of the recurrence relation 

U={";K:1>} <"ai^o> p3) 

with 
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{^} = 0 (»>0), {°} = 0(/>>l), and {°} = 1. 

Precisely the same methods apply to this case as presented for Case 1. Corresponding results 
are given. 

TABLE 4. Pascal Triangle 

1 
1 
1 
1 
1 
1 
1 
1 

0 
1 
2 
3 
4 
5 
6 
7 

0 
0 
1 
3 
6 

10 
15 
21 

0 
0 
0 
1 
4 

10 
20 
35 

0 
0 
0 
0 
1 
5 

15 
35 

0 
0 
0 
0 
0 
1 
6 

21 

0 
0 
0 
0 
0 
0 
1 
7 

0 
0 
0 
0 
0 
0 
0 
1 

0 
0 
0 
0 
0 
0 
0 
0 

1 8 28 56 70 56 28 8 1 

Property 6 (Columns): It is interesting to note that the /7th column of the Pascal triangle is thus 
determined by the polynomial in n which interpolates p zeros followed by 1. 

Property 7 (Column Sums): 

For the Pascal triangle, 
|{;Hr4-U>K} (2.4) 

as expected (since here {£} is just the binomial coefficient). 

Property 8 (Diagonal Sums): 

d„ — d„ x — d„ r, + < > = d 
n n—i n—l \TI\ t n-2> 

dQ = dx - 1 in this case (very well known). 

Property 9 (Determinants): 

Ml -MM1!! N0P 
= 1 in this case. 

Similarly (see Property 5), all (left-justified) square sub-arrays are unimodular (as noted by 
Bicknell & Hoggatt [1]). Also, as before, Properties 6-9 apply to the array formed with arbitrary 
initial row. Three examples follow. 

Case 2, Example 1 (Division of /?-Space by n (p - 1)-Spaces): The array in Table 5 is (2.3) 
with {Q} = 1, {°p} = 1 (p > 1). This relation is a generalization of the recurrence relations governing 
the maximum number of parts into which p-space can be divided by n (p-l) -spaces for/? = 1, 2, 
3. (Shannon [12] discusses these three instances in the context of the pedagogy of problem-
solving.) 
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Properties 6-9 reduce to: entries in the p^1 column are given by the /7th-order polynomial 
which interpolates {1,2,4,..., 2P}, the p^ column sum is given by 

(thus, the diagonal sums are the partial sums of the Fibonacci sequence), and all left-justified 
square sub-arrays are unimodular. 

TABLE 5. Array In Case 25 Example 1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
2 
4 
7 
11 
16 
22 
29 
37 

1 
2 
4 
8 
15 
26 
42 
64 
93 

1 
2 
4 
8 
16 
31 
57 
99 
163 

1 
2 
4 
8 
16 
32 
63 
120 
219 

1 
2 
4 
8 
16 
32 
64 
127 
247 

1 
2 
4 
8 
16 
32 
64 
128 
255 

1 
2 
4 
8 
16 
32 
64 
128 
256 

Case 29 Example 2 (Another Fibonacci Array): Using (2.3) with {°p} = Fp+1 (p > 0) gives the 
array in Table 6. In this case, the /7th column is determined by the interpolating polynomial for 
the sequence {F +l, Fp+2, • ••,F2p+l}, the pm column sum is given by 

ln + l\-F 
[p + lf P+2> 

diagonal sums obey dn = dn_x +dn_2+Fn+l (d0 = l9dx = 2) and all left-justified square sub-arrays 
are unimodular. 

TABLE 6e Array In Case 29 Example 2 

1 1 2 3 5 8 13 21 34 
1 2 3 5 8 13 21 34 55 
1 3 5 8 13 21 34 55 89 
1 4 8 13 21 34 55 89 144 
1 5 12 21 34 55 89 144 233 
1 6 17 33 55 89 144 233 377 
1 7 23 50 88 144 233 377 610 
1 8 30 73 138 232 377 610 987 
1 9 38 103 211 370 609 987 1597 

It is of interest to note that Lavers [8] found the corresponding "Fibonacci triangle" in his 
investigation of certain idempotent transformations. 

Case 25 Example 3 (The Lucas Triangle): Setting {§} = 1, {°} = 2, and {°p} = Q(p> 2) in (2.3) 
gives the array in Table 7. This is the so-called Lucas triangle ([3], p. 26). Here the /7th column 
is determined by the interpolating polynomial for the sequence {0,..., 0,2,2/7 + 1}, the pxh column 
sum is given by 

diagonal sums obey dn = dn_x + dn_2 (dQ = l9dx = 3) (the Lucas numbers) and, once again, all left-
justified square sub-arrays are unimodular. 
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TABLE 7. Array in Case 25 Example 3 
1 2 
1 3 
1 4 
1 5 
1 6 
1 7 
1 8 
1 9 
1 10 

0 
2 
5 
9 
14 
20 
27 
35 
44 

0 
0 
2 
7 
16 
30 
50 
77 
112 

0 
0 
0 
2 
9 
25 
55 
105 
182 

0 
0 
0 
0 
2 
11 
36 
91 
196 

0 
0 
0 
0 
0 
2 
13 
49 
140 

0 
0 
0 
0 
0 
0 
2 
15 
64 

0 
0 
0 
0 
0 
0 
0 
2 
17 

2.3 Generalizations 
We now generalize the foregoing to recursive relations of the form 

with {"]} = 0\/n and other boundary conditions for {£} (n < 0, p > 0) given as necessary. 

The above covers each of the earlier cases and others including: 
(a) the complementary binomial coefficients of Puritz ([3], p. 33) (Table 8) where 

(2.5) 

with 
feH%"H-'} ("^i0)-

{_",} = 0V„, {°} = 0 ( ^ 1 ) , and {»}: 

TABLE 8: Array in 2.3(a) 
1 0 
1 -1 
1 -2 
1 -3 
1 -4 
1 -5 
1 -6 
1 -1 
1 -8 

0 
1 
3 
6 
10 
15 
21 
28 
36 

0 
-1 
-4 
-10 
-20 
-35 
-56 
-84 
-120 

0 
1 
5 
15 
35 
70 
126 
210 
330 

0 
-1 
-6 
-21 
-56 
-126 
-252 
-462 
-792 

0 
1 
7 
28 
84 
210 
462 
924 
1716 

0 
-1 
-8 
-36 
-120 
-330 
-792 
-1716 
-3432 

0 
1 
9 
45 
165 
495 
1287 
3003 
6435 

(b) an analog of the Pascal triangle (Table 9) studied by Wong & Maddocks ([3], p. 36), 
where 

with 
{ ;H";H:K~4 <«—>• 

{-J} = 0(p>t», and {»} = !, 

for which row sums are Pell numbers and diagonal sums are "Tribonacci" numbers; 
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TABLE 9, Array in 2.3(b) 
0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
3 1 0 0 0 0 0 0 
5 5 1 0 0 0 0 0 
7 13 7 1 0 0 0 0 
9 25 25 9 1 0 0 0 

11 41 63 41 11 1 0 0 
13 61 129 129 61 13 1 0 
15 85 231 321 231 85 15 1 and 

(2.6) 

(c) the recurrence relation 

studied by Cadogan ([3], p. 30). 

Property 10 (Column Sums): The most straightforward generalization is for the special case of 

with {.4} = 0 Vw and other boundary conditions for {£} (n < 0, p > 0) given as necessary 

For n>\ and p>0, 

-fc+4-u.wa 
Property 11 (Diagonal Sums): For n > 1, 

=55M'-iM-} 
; = r j=r 7=0 I J ^ J 

Property 12 (Determinants): For ft * 0, and noting that {Q} = aft" (a = {g}? w > 0), 

ffl {?} • • • $ ' 
'fell w ffl-H'} fel-H";1 

l(l,m) 

o H o 

Z^ / I n - 1 
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H o ^ / o iLwA o f'" ^ a ^ - a M o 
^ ^ / ^ ' i,j ^ J i,J,...k { J 

= am+1 b^afl 
m(m+l)/2 

Sufficient conditions for this derivation are that each element below and including {m+(™-l>} 
(m > 2, 0 < p < m -1) has been formed by the given recurrence relation. (Thus, if m + (m - l)r < 0, 
the result will only apply to sub-arrays beginning at row l-m-(m-l)r. This is not a restriction 
i f r > - l . ) 

When b = 0, we need only restrict the previous formula to r = s - -1 (though it will apply to 
5 > - l ) , hence, 

"> J(0,w) 

m+l m(m+l)/2 
= a a 

Thus, other unimodular arrays can be formed by setting, for example, a - h = S ax, = 1. 

3. GENERALIZED PASCAL TRIANGLES 

Consider the square with the rule of formation, 

®-V-H-U-% 
with 

nl=o(P<o), l^ j^o o>o), JQ1 = 1(J»0). 

TABLE 10. Generalized Pascal Triangle 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
2 
2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 

1 
2 
3 
5 
6 
9 
10 
14 
15 
20 
21 
27 
28 
35 

1 
2 
5 
7 
13 
16 
26 
30 
45 
50 
71 
77 
105 

1 
3 
6 
13 
19 
35 
45 
75 
90 
140 
161 

1 
3 
9 
16 
35 
51 
96 
126 
216 
266 

1 
4 
10 
26 
45 
96 
141 
267 

1 
4 
14 
30 
75 
126 
267 

1 
5 
15 
45 
90 
216 

1 
5 
20 
50 
140 

1 
6 
21 
71 

1 1 1 
6 7 7 
27 

(3.1) 

If we add along the diagonals in Table 10, we get the sequence {1,2,3,6,18,27,54,81,162,...}, 
which is generated by the recurrence relation Wn - Wn_x + Wn_2 + S(2, n)Wn_^ n>3, where 

fl if/w|«, 
5(m, n) = 0 otherwise, (Shannon [11]) 
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and the initial terms are Wi = i, i = 1,2, 3. We can bifurcate this sequence into Wln = {1, 3, 9, 27, 
81,...} and W2n = (2, 6,18,54,162,...}, which are generated by the recurrence relation 

W; 
J" ••Wj.n-i+Wj^2, n>2. (3.3) 

This bifurcation enables us to distinguish two triangles within the square array, as in Tables 11 
and 12. 

TABLE 11, Triangle Corresponding to {Wln} [1] 
l 
l l 1 
1 2 3 2 1 
1 3 6 7 6 3 1 
1 4 10 16 19 16 10 4 1 
1 5 15 30 45 51 45 30 15 5 1 
1 6 21 50 90 126 141 126 90 50 21 6 1 

TABLE 12. Triangle Corresponding to {W2n} 
1 
2 
3 
4 
5 
6 

2 
5 
9 
14 
20 

1 
5 
13 
26 
45 

3 
13 
35 
75 

1 
9 
35 
96 

4 
26 
96 

1 
14 5 1 
75 45 20 6 

Notice that the triangle in Table 12 has the feature that 

UP}-2-3"- "-*1--
Obviously we get the ordinary Pascal triangle if we take the diagonals of the Pascal square (see 
Table 1). Similarly, if we consider 

;HVHr-K-i (3.4) 

with (o} = l? {£} = !, which is also of the form (2.5), we get the square in Table 13(a) and the 
triangle in Table 13(b). In addition to the properties of Section 2, the numbers in Table 11(a), 
D(n, m), are Delanoy numbers [14] and are linked to minimal paths in lattices. We observe here 
that the row sums yield the Pell sequence {Pn} = {1,2,5,12,29,70,...} defined by the initial terms 
i} = 1, P2 = 2, and the second-order recurrence relation (Horadam [7]) Pn = 2Pn_l + Pn_2, n>2. 

TABLE 13, Arrays Corresponding to (3.4) 

(a) (b) 
1 
1 
1 
1 
1 

1 
3 
5 
7 
9 

1 
5 
13 
25 
41 

1 
7 
25 
63 
129 

1 
9 
41 
129 
321 

1 
1 
1 
1 
1 
1 

1 
3 
5 
7 
9 

1 
5 
13 
25 

1 
7 1 
25 9 1 

This is a particularly rich triangle because, when we add along the diagonals, we obtain the 
third-order sequence {0,0,1,1,2,4, 7,13,24,44,...}. 
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Again, if we take the triangle from the diagonals of the array formed from equation (2.3), 

{;H";K--i} 
with {Q} = L {p} = 1, we get the square and triangle of Table 14(a) and (b). 

TABLE 14. Arrays Associated with (3.5) 

(a) (b) 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
2 
4 
7 
11 
16 
22 
29 
37 

1 
2 
4 
8 
15 
26 
42 
64 
93 

1 
2 
4 
8 
16 
31 
57 
99 
163 

1 
2 
4 
8 
16 
32 
63 
120 
219 

1 
2 
4 
8 
16 
32 
64 
127 
247 

1 
2 
4 
8 
16 
32 
64 
128 
255 

1 
2 
4 
8 
16 
32 
64 
128 
256 

1 
1 
1 
1 
1 
1 
1 
1 

1 
2 
3 
4 
5 
6 
7 

1 
2 
4' 
7 
11 
16 

1 
2 
4 
8 
15 

1 
2 
4 
8 

Here, too, we find two sequences. The row sums yield {xn} - {1,2,4,7,12,20, 33,...}, with 
the nonhomogenous second-order recurrence relation xn = xn_x +xn_2 + 1, while the diagonal sums 
yield {yn} - {1,1,2, 3,5, 7,11,16,24,35, 52,...}, which is formed from the fifth-order recurrence 
relation yn-yn_x +yn_2 ~yn^5, n>5, which is a particular case of equation (1) found in Dubeau & 
Shannon [5]. 

4. CONCLUSION 

We have demonstrated that a number of well-known properties of Pascal-type arrays are 
consequences of a more general partial recurrence relation. Further investigations could include 
relating the various sequences to standard sequences identified by Sloane [13]. Algebraic struc-
tural properties can be studied along the lines of Korec [6] who has, in effect, generalized some of 
the work of Wells [15]. 
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