SOME IDENTITIES INVOLVING THE EULER AND THE CENTRAL FACTORIAL NUMBERS

Wenpeng Zhang

Department of Mathematics, The University of Georgia, Athens, GA 30602
(Submitted February 1996-Final Revision June 1996)

1. INTRODUCTION AND RESULTS

Let x be a real number with $|x|<\pi / 2$. The Euler sequence $E=\left(E_{2 n}\right), n=1,2, \ldots$, is defined by the coefficients in the expansion of

$$
\sec x=\sum_{n=0}^{\infty} \frac{E_{2 n}}{(2 n)!} x^{2 n} .
$$

That is, $E_{0}=1, E_{2}=1, E_{4}=5, E_{6}=61, E_{8}=1385, E_{10}=50521, \ldots$. These numbers arose in some combinatorial contexts, and were investigated by many authors. For example, see Lehmer [7] and Powell [8]. The main purpose of this paper is to study the calculating problem of the summation involving the Euler numbers, i.e.,

$$
\begin{equation*}
\sum_{a_{1}+a_{2}+\cdots+a_{k}=n} \frac{E_{2 a_{1}} E_{2 a_{2}} \ldots E_{2 a_{k}}}{\left(2 a_{1}\right)!\left(2 a_{2}\right)!\ldots\left(2 a_{k}\right)!}, \tag{1}
\end{equation*}
$$

where the summation is over all k-dimension nonnegative integer coordinates $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ such that $a_{1}+a_{2}+\cdots+a_{k}=n$, and k is any odd number with $k>1$.

This problem is interesting because it can help us to find some new recurrence properties for $\left(E_{2 n}\right)$. In this paper we use the differential equation of the generating function of the sequence $\left(E_{2 n}\right)$ to study the calculating problems of (1), and give an interesting identity for (1) for any fixed odd number $k>1$. That is, we shall prove the following main conclusion.

Theorem: Let n and m be nonnegative integers and $k=2 m+1$. Then we have the identity

$$
\begin{aligned}
& \sum_{a_{1}+a_{2}+\cdots+a_{k}=n} \frac{E_{2 a_{1}} E_{2 a_{2}} \ldots E_{2 a_{k}}}{\left(2 a_{1}\right)!\left(2 a_{2}\right)!\ldots\left(2 a_{k}\right)!} \\
&=\frac{1}{(k-1)!(2 n)!} \sum_{i=0}^{m}(-1)^{i} 4^{i} t(2 m+1,2 m-2 i+1) E_{2 n+2 m-2 i},
\end{aligned}
$$

where $t(n, k)$ are central factorial numbers.
From the above theorem, we may immediately deduce the following.
Corollary 1: For any odd prime p, we have the congruence

$$
E_{p-1} \equiv \begin{cases}0(\bmod p), & \text { if } p \equiv 1(\bmod 4), \\ -2(\bmod p), & \text { if } p \equiv 3(\bmod 4) .\end{cases}
$$

Corollary 2: For any integer $n>0$, we have the congruences
(a) $E_{2 n+2}+E_{2 n} \equiv 0(\bmod 6)$,
(b) $E_{2 n+4}+10 E_{2 n+2}+9 E_{2 n} \equiv 0(\bmod 24)$,
(c) $E_{2 n+6}+E_{2 n} \equiv 0(\bmod 42)$.

2. PROOF OF THE THEOREM

In this section, we shall complete the proof of the theorem. First, we give an elementary lemma which is described as follows.

Lemma: Let $F(x)=1 / \cos x$. Then, for any odd number $k=2 m+1>1, F(x)$ satisfies the differential equation

$$
(2 m)!F^{k}(x)=\sum_{i=0}^{m} c_{i}(m) F^{(2 m-2 i)}(x),
$$

where $F^{(r)}(x)$ denotes the $r^{\text {th }}$ derivative of $F(x)$, and the constants $c_{i}(m), i=0,1,2, \ldots, m$, are defined by the coefficients of the polynomial

$$
G_{m}(x)=\left(x+1^{2}\right)\left(x+3^{2}\right)\left(x+5^{2}\right) \cdots\left(x+(2 m-1)^{2}\right)=\sum_{i=0}^{m} c_{i}(m) x^{m-i}
$$

Note: The constants $c_{i}(m)$ in the Lemma are special cases of the generalized Stirling numbers of the first kind, $s_{\xi}(n, k)$, introduced by Comtet [2], i.e.,

$$
\left(x-\xi_{0}\right)\left(x-\xi_{1}\right) \cdots\left(x-\xi_{n-1}\right)=\sum_{i=0}^{n} s_{\xi}(n, i) x^{i} .
$$

Moreover, the constants $c_{i}(m)$ are, in fact, the central factorial numbers $t(n, k)$ (see Riordan [9]). The inverse and similar numbers are treated in many important papers by Carlitz [3] and [4], and by Carlitz and Riordan [5]. For some generalizations, see Charalambides [6].

Now we prove the Lemma by induction. From the definition of $F(x)$, and differentiating it, we may obtain

$$
F^{\prime}(x)=\frac{\sin x}{\cos ^{2} x}, \quad F^{\prime \prime}(x)=\frac{\cos ^{3} x+2 \sin ^{2} x \cos x}{\cos ^{4} x}=\frac{2}{\cos ^{3} x}-\frac{1}{\cos x},
$$

i.e.,

$$
\begin{equation*}
2 F^{3}(x)=F^{\prime \prime}(x)+F(x) . \tag{2}
\end{equation*}
$$

This proves that the Lemma is true for $m=1$. Assume, then, that it is true for a positive integer $m=u$. That is,

$$
\begin{equation*}
(2 u)!F^{2 u+1}(x)=\sum_{i=0}^{u} c_{i}(u) F^{(2 u-2 i)}(x) . \tag{3}
\end{equation*}
$$

We shall prove it is also true for $m=u+1$. Differentiating (3), we have

$$
\begin{gather*}
(2 u+1)!F^{2 u}(x) F^{\prime}(x)=\sum_{i=0}^{u} c_{i}(u) F^{(2 u-2 i+1)}(x), \\
2 u(2 u+1)!F^{2 u-1}(x)\left(F^{\prime}(x)\right)^{2}+(2 u+1)!F^{2 u}(x) F^{\prime \prime}(x)=\sum_{i=0}^{u} c_{i}(u) F^{(2 u-2 i+2)}(x) . \tag{4}
\end{gather*}
$$

From the equality

$$
4^{-n}\left(4 x^{2}-1^{2}\right)\left(4 x^{2}-3^{2}\right) \cdots\left(4 x^{2}-(2 n-1)^{2}\right)=\sum_{k=0}^{n} t(2 n+1,2 k+1) x^{2 k}
$$

we get

$$
\begin{equation*}
c_{k}(n)=(-1)^{k} 4^{k} t(2 n+1,2 n-2 k+1) . \tag{5}
\end{equation*}
$$

These numbers are tabulated in Riordan [9]. Using this expression and the recursive relation $t(n, k)=t(n-2, k-2)-\frac{1}{4}(n-2)^{2} t(n-2, k)$, we have the recurrence relation

$$
\begin{equation*}
c_{k}(n+1)=c_{k}(n)+(2 n+1)^{2} c_{k-1}(n) \tag{6}
\end{equation*}
$$

with initial conditions $c_{0}(n)=1, c_{n}(n)=1^{2} 3^{2} \ldots(2 n-1)^{2}$. Substituting $\left(F^{\prime}(x)\right)^{2}$ by $F^{4}(x)-F^{2}(x)$ and $F^{\prime \prime}(x)$ by $2 F^{3}(x)-F(x)$ in (4) and applying (3) and (6), we have

$$
\begin{aligned}
(2 u+2)!F^{2 u+3}(x) & =(2 u)!(2 u+1)^{2} F^{2 u+1}(x)+\sum_{i=0}^{u} c_{i}(u) F^{(2 u+2-2 i)}(x) \\
& =(2 u+1)^{2} \sum_{i=0}^{u} c_{i}(u) F^{(2 u-2 i)}(x)+\sum_{i=0}^{u} c_{i}(u) F^{(2 u+2-2 i)}(x) \\
& =c_{0}(u) F^{(2 u+2)}(x)+(2 u+1)^{2} c_{u}(u) F(x)+\sum_{i=0}^{u-1}\left(c_{i+1}(u)+(2 u+1)^{2} c_{i}(u)\right) F^{(2 u-2 i)}(x) \\
& =c_{0}(u+1) F^{(2 u+2)}(x)+c_{u+1}(u+1) F(x)+\sum_{i=1}^{u} c_{i}(u+1) F^{(2 u+2-2 i)}(x) \\
& =\sum_{i=0}^{u+1} c_{i}(u+1) F^{(2 u+2-2 i)}(x)
\end{aligned}
$$

That is, the Lemma is also true for $m=u+1$. This proves the Lemma.
Now we complete the proof of the Theorem. Note that

$$
F^{(2 i)}(x)=\sum_{n=0}^{\infty} \frac{E_{2 n+2 i}}{(2 n)!} x^{2 n}, \quad i=0,1,2, \ldots
$$

Comparing the coefficient of $x^{2 n}$ on both sides of the Lemma and applying (5), we immediately obtain

$$
\begin{aligned}
(2 m)!\sum_{a_{1}+a_{2}+\cdots+a_{k}=n} \frac{E_{2 a_{1}} E_{2 a_{2}} \ldots E_{2 a_{k}}}{\left(2 a_{1}\right)!\left(2 a_{2}\right)!\ldots\left(2 a_{k}\right)!} & =\frac{1}{(2 n)!} \sum_{i=0}^{m} c_{i}(m) E_{2 n+2 m-2 i} \\
& =\frac{1}{(2 n)!} \sum_{i=0}^{m}(-1)^{i} 4^{i} t(2 m+1,2 m-2 i+1) E_{2 n+2 m-2 i}
\end{aligned}
$$

where the constants $c_{i}(m), i=0,1,2, \ldots, m$ are the coefficients of the polynomial

$$
G_{m}(x)=\left(x+1^{2}\right)\left(x+3^{2}\right)\left(x+5^{2}\right) \cdots\left(x+(2 m-1)^{2}\right)=\sum_{i=0}^{m} c_{i}(m) x^{m-i}
$$

This completes the proof of the Theorem.
Proof of the Corollaries: Taking $n=0$ and $k=p$ in the Theorem, and noting that $E_{0}=1$, $(p-1)!\equiv-1(\bmod p)($ Wilson's theorem, see Apostol [1]), we can get

$$
\begin{aligned}
-1 & \equiv(p-1)!=\sum_{i=0}^{\frac{p-1}{2}} c_{i}\left(\frac{p-1}{2}\right) E_{p-1-2 i} \equiv E_{p-1}+c_{\frac{p-1}{2}}\left(\frac{p-1}{2}\right) E_{0} \\
& \equiv E_{p-1}+1^{2} 3^{2} 5^{2} 7^{2} \ldots(p-2)^{2} \equiv E_{p-1}+(-1)^{\frac{p-1}{2}}(p-1)!\equiv E_{p-1}-(-1)^{\frac{p-1}{2}} \quad(\bmod p)
\end{aligned}
$$

where we have used the congruences

$$
c_{i}\left(\frac{p-1}{2}\right) \equiv 0(\bmod p), \quad i=1,2, \ldots, \frac{p-3}{2}
$$

Therefore,

$$
E_{p-1} \equiv\left\{\begin{array}{lll}
0(\bmod p), & \text { if } p \equiv 1 & (\bmod 4) \\
-2(\bmod p), & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

This completes the proof of Corollary 1.
Taking $m=1$ and 2 in the Theorem, respectively, we can get

$$
\begin{gathered}
E_{2 n+4}+E_{2 n+2} \equiv E_{2 n+2}+E_{2 n} \equiv 0(\bmod 2) \\
E_{2 n+4}+10 E_{2 n+2}+9 E_{2 n} \equiv 0(\bmod 24)
\end{gathered}
$$

Thus, $0 \equiv E_{2 n+4}+10 E_{2 n+2}+9 E_{2 n} \equiv E_{2 n+4}+E_{2 n+2} \equiv 0(\bmod 3)$. Since $(2,3)=1, E_{2 n+4}+E_{2 n+2} \equiv 0$ $(\bmod 2)$, we have $E_{2 n+4}+E_{2 n+2} \equiv 0(\bmod 6)$, that is, $E_{2 n+2}+E_{2 n} \equiv 0(\bmod 6), \quad n=1,2,3, \ldots$.

Similarly, taking $m=4$ in the Theorem, we can obtain the congruent equation

$$
E_{2 n+8}+84 E_{2 n+6}+1974 E_{2 n+4}+12916 E_{2 n+2}+11025 E_{2 n} \equiv 0(\bmod 40320)
$$

Thus, $0 \equiv E_{2 n+8}+84 E_{2 n+6}+1974 E_{2 n+4}+12916 E_{2 n+2}+11025 E_{2 n} \equiv E_{2 n+8}+E_{2 n+2}(\bmod 21)$, that is, $E_{2 n+6}+E_{2 n} \equiv 0(\bmod 21), n=1,2,3, \ldots$ Noting that $E_{2 n+6}+E_{2 n} \equiv 0(\bmod 2)$ and $(2,21)=1$, we get $E_{2 n+6}+E_{2 n} \equiv 0(\bmod 42)$. This proves Corollary 2 .

ACKNOWLEDGMENTS

The author expresses his gratitude to Professor Andrew Granville and to the anonymous referee for their very helpful and detailed comments.

REFERENCES

1. Tom M. Apostol. Introduction to Analytic Number Theory. New York: Springer-Verlag, 1976.
2. L. Comtet. "Nombres de Stirling generaux et fonctions symmetriques." C. R. Acad. Sc. Paris, Serie A 275 (1972):747-50.
3. L. Carlitz. "Single Variable Bell Polynomials." Collectanea Mathematica 14 (1962):13-25.
4. L. Carlitz. "Set Partitions." The Fibonacci Quarterly 14.4 (1976):327-42.
5. L. Carlitz \& J. Riordan. "The Divided Central Differences of Zero." Canad. J. Math. 15 (1963):94-100.
6. Ch. A. Charalambides. "Central Factorial Numbers and Related Expansions." The Fibonacci Quarterly 19.5 (1981):451-56.
7. E. Lehmer. "On Congruences Involving Bernoulli Numbers and the Quotients of Fermat and Wilson." Annals of Math. 39 (1938):350-60.
8. Barry J. Powell. Advanced Problem 6325. Amer. Math. Monthly 87 (1980):826.
9. J. Riordan. Combinatorial Identities. New York: Wiley, 1968.

AMS Classification Numbers: 11B37, 11B39

