A NOTE ON STIRLING NUMBERS OF THE SECOND KIND

Nenad P. Cakić
Faculty of Technology, Dept. of Math., 16000 Leskovac, Yugoslavia
(Submitted July 1996-Final Revision March 1997)

1. INTRODUCTION

In [3], Todorov proved a theorem related to the explicit expression for Stirling numbers of the second kind, $S(n, m)$, in a very complicated way. In this paper, we shall prove that this result is a consequence of the well-known representation of the Stirling numbers of the second kind.

Starting from the rational generating function for Stirling numbers of the second kind,

$$
\begin{equation*}
\frac{t^{m}}{(1-t)(1-2 t) \cdots(1-m t)}=\sum_{n=m}^{\infty} S(n, m) t^{n}, \tag{1}
\end{equation*}
$$

we find that the left side of (1) is identical to

$$
\begin{gather*}
t^{m}\left(1+t+t^{2}+\cdots\right)\left(1+2 t+2^{2} t^{2}+\cdots\right) \cdots\left(1+m t+m^{2} t^{2}+\cdots\right) \\
=\sum_{n=m}^{\infty}\left(\sum_{k_{1}+k_{2}+\cdots+k_{m}=n-m} 1^{\left.k_{1} 2^{k_{2}} \cdots m^{k_{m}}\right) t^{m} .}\right. \tag{2}
\end{gather*}
$$

If we identify coefficients of t^{n} from equations (1) and (2), we get (see Aigner [1] or Comtet [2]):

$$
S(n, m)=\sum_{k_{1}+k_{2}+\cdots+k_{m}=n-m} 1^{k_{1}} 2^{k_{2}} \cdots m^{k_{m}} .
$$

This formula is identical to

$$
\begin{equation*}
S(n, m)=\sum_{1 \leq i_{1} S_{2} \leq \cdots s_{n-m} \leq m} i_{1} i_{2} \cdots i_{n-m} . \tag{3}
\end{equation*}
$$

In this paper, we prove that Todorov's expression for Stirling numbers of the second kind (see [3]) is a simple consequence of the representation (3).

1. THE MAIN RESULT

Let us take, in (3), the change of indices in the following way:

$$
\begin{equation*}
i_{s}=j_{s}-s \quad(s=1,2, \ldots, k) \tag{4}
\end{equation*}
$$

Then, from $1 \leq i_{1} \leq i_{2}$, we have $2 \leq i_{1}+1 \leq i_{2}+1$, i.e., $2 \leq j_{1} \leq j_{2}-1$. Similarly, from

$$
(\forall s \in\{1,2, \ldots, k\}), \quad s \leq i_{s-1}+s-1 \leq i_{s}+s-1,
$$

using (4), we get

$$
s \leq j_{s-1} \leq j_{s}-1 \quad(s=2, \ldots, k) .
$$

For $k=n-m$, we obtain $k+1 \leq j_{k}-(n-m) \leq m$, i.e., $k+1 \leq j_{k} \leq n$. So, the sum on the right side of the equality (3) is identical to

$$
\begin{equation*}
S(n, m)=\sum_{j_{k}=k+1}^{n} \sum_{j_{k-1}=k}^{j_{k}-1} \cdots \sum_{j_{2}=3}^{j_{3}-1} \sum_{j_{1}=2}^{j_{2}-1}\left(j_{k}-k\right)\left(j_{k-1}-k+1\right) \cdots\left(j_{1}-1\right), \tag{5}
\end{equation*}
$$

which is the result from [3].
Example: We use $n=6, m=3$, and $k=n-m=3$. Following the change of indices from the equality (4), we get $i_{1}=j_{1}-1, i_{2}=j_{2}-2$, and $i_{3}=j_{3}-3$. Then, from $1 \leq i_{1} \leq i_{2} \leq i_{3} \leq 3$, we have $2 \leq j_{1} \leq j_{2}-1,3 \leq j_{2} \leq j_{3}-1$, and $4 \leq j_{3}-3 \leq 3$, i.e., $4 \leq j_{3} \leq 6$.

After these transformations, from formula (3) it follows that

$$
\begin{aligned}
S(6,3) & =90=\sum_{1 \leq_{1} \leq i_{2} \leq i_{3} \leq 3} i_{i} i_{2} i_{3} \\
& =1 \cdot 1 \cdot 1+1 \cdot 1 \cdot 2+1 \cdot 1 \cdot 3+1 \cdot 2 \cdot 2+1 \cdot 2 \cdot 3+1 \cdot 3 \cdot 3+2 \cdot 2 \cdot 2+2 \cdot 2 \cdot 3+2 \cdot 3 \cdot 3+3 \cdot 3 \cdot 3 \\
& =1 \cdot 1 \cdot 1+2 \cdot(1 \cdot 1+2 \cdot 1+2 \cdot 2)+3 \cdot(1 \cdot 1+2 \cdot 1+2 \cdot 2+3 \cdot 1+3 \cdot 2+3 \cdot 3) \\
& =\sum_{j_{3}=4}^{6} \sum_{j_{2}=3}^{j_{3}-1} \sum_{j_{j}=2}^{j_{2}-1}\left(j_{3}-3\right)\left(j_{2}-2\right)\left(j_{1}-1\right),
\end{aligned}
$$

which is formula (5), where we use $n=6, m=3$, and $k=n-m=3$.

REFERENCES

1. M. Aigner. Combinatorial Theory, p. 107. Berlin, Heidelberg, New York: Springer-Verlag, 1979. (In Russian.)
2. L. Comtet. Advanced Combinatorics, p. 207. Dordrecht: Reidel, 1974.
3. K. Todorov. "Über die Anzahl der Äquivalenzrelationen der endlichen Menge." Studia Sci. Math. Hung. 14 (1979):311-14.
AMS Classification Numbers: 05A15, 05A19

