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1. INTRODUCTION 

A curious problem is that of finding closed-form expressions for the positive real numbers 
(say x) that preserve their fractional parts when raised to the k^ power (k > 2, an integer). It is 
quite obvious that all the positive integers enjoy this property. 

Since no positive number less than 1 can enjoy it, the numbers x are characterized by the fact 
that xk diminished by x equals a nonnegative integer. In other words, the numbers in question are 
given by the positive roots xn(tc) of the k^ (k > 2) degree equation 

xk-x = n. (1.1) 

where n is an arbitrary nonnegative integer. Equations like (1.1) are said to be of the Bring-
Jerrard form [1, pp. 179-81]. Observe that the positive integers emerge as solutions of (1.1) 
when n-ak -a (a- 1,2,3,...). 

From this point on, the symbol xn(k) (n = 0,1,2,...) will denote the 72th positive real number 
that preserves its fractional part when raised to the power k. 

The case k = 2 has been considered in [4]. In that article k was allowed to assume negative 
values also, and the author proved that the golden section a - (1 + JE)/ 2 = x^-l) = xx(2) is the 
only nonintegral number that preserves its fractional part both when one squares it and when one 
takes its reciprocal. 

In this article we extend this study by considering the cases k = 3,4, and 5. The solutions for 
k = 3 and 4 are readily found as the closed form expressions for third- and fourth-degree equa-
tions are known; we show them only for the sake of completeness. Solving the case k = 5 has 
been a bit more complicated, and is our main result. More precisely, we have established the 
closed-form expressions for the only three nonintegral numbers xn(S) for which it can be given: 
these numbers are xl5(5), x22440(5), and x2759640(5). This assertion comes from the fact that the 
quintic of the Bring-Jerrard form x5 - x - r (r GZ) can be solved by radicals iff either r = m5 -nt, 
or r = ±15, ±22440, or ±2759640. The proof of this result involves a well-known property [2] of 
the Fibonacci numbers Fj. 

2. THE NUMBERS xn(k) FOR k = 2, 3 AND 4 

By using (1.1) and the well-known formulas for the solution of second-, third-, and fourth-
degree equations, the following results have been established: 

xw(2) = (l + V4^TT)/2 (^ = 0,1,2,...) (see [4]), (2.1) 
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^-k-M-i^M^ *-•"••* M 
and 

where 

_jK+J-yn+2yly2„+4n 
x„(4)=^" * -"2 ^ (/i = 0,1,2,...), (2.3) 

^ Remark: If w = 0, then x„(2) and x„(4) defined by (2.1) and (2.3), respectively, clearly equal 
1, as expected. Let us show that x0(3) defined by (2.2) equals 1 as well. In fact, letting n - 0 in 
(2.2) gives 

*.(3) = f ^ + ̂ fJ = ̂ [V5 + y7], (2.5) 
where / is the imaginary unit. Considering the principal values of the cubic roots in (2.5) yields 

xQ(3) = J - I cos— -1sin — + cos— +1sin — 

as expected. 

3, SOLVING x 5 - x - r 

The quintic q(x) -x5 -x-r ( reZ) may be either irreducible or reducible over the rational 
field Q. If it is reducible over Q, then it is reducible over Z as well [9, Th. 23, p. 24]. Neces-
sary and sufficient conditions for its decomposition are given in [8]. Since the argument leading 
to the complete characterization of the quintics q(x) that are solvable by radicals is based essen-
tially on properties of irreducible quintics, we settle first the irreducible case, then we complete 
the discussion by addressing the reducible case. 

3.1 The Irreducible Case 
We shall prove that, if q(x) is irreducible over Q, then it cannot be solved by radicals. To 

this aim, we need the following theorem by Dummit [3, p. 389] that we quote in a form 
specialized to our Bring-Jerrard quintic q(x). 

Theorem 1 (Dummit): If q(x) = x5 -x-r {r el) is irreducible, then it can be solved by radi-
cals iff the polynomial 

x6-8x5+40x4-160x3+400x2-(3125r4 + 512)x + (9375r4+256) (3.1) 

has a rational root. If this is the case, then the polynomial (3.1) factors into the product of a linear 
polynomial and an irreducible quintic. 

Next we state our main theorem. 
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Theorem 2: If q(x) = x5 - x - r (r e Z) is irreducible, then it cannot be solved by radicals. 

Proof (reductio ad ahsurdum): From Theorem 1, it is sufficient to prove that no integer r 
yields a rational root u of the monic polynomial (3.1). After observing that a rational root of a 
monic polynomial is necessarily an integer (from the Rational Root Theorem, e.g., see [5, 
p. 253]), we suppose the existence of an integer root w, thus getting a contradiction. 

First, replace x by the integer u in (3.1), equate this polynomial to zero, and solve for r4, thus 
obtaining the equality 

4 = ( « - 2 ) V + 16) 
55(w-3) ' 

which can be rewritten in the form 

«2 + 16 = 5 ( « - 3 ) ^ J . (3.2) 

Now, observe that 5[5r I (u - 2)]4 must be an integer because g.c.d. (u - 3, u - 2) = 1. Conse-
quently, if u - 2 is not divisible by 5, then r I (u - 2) must be an integer, while, if u - 2 is divisible 
by 5, then 5r/(u- 2) must be an integer. In both cases it follows that, if u is an integer, then the 
quantity v = 5r / (u - 2) is an integer as well. 

Then, from (3.2), write the quadratic equation in u, 

w2-5v4*/ + 15v4 + 16 = 0, (3.3) 

whose discriminant 25v8 - 60v4 - 64 must be a perfect square (say, w2) because u is an integer by 
hypothesis. Hence, v is a root of the quadratic equation in z, 

25z 2 -60z-w 2 -64 = 0, (3.4) 

where z = v4. Again, the discriminant 100(w2 + 100) of (3.4) must be a perfect square (say, 
100s2) so that w and s satisfy the diophantine equation 

w2 + 100 = ,s2 (3.5) 

whose solutions are (w, s) = (24,26) and (0,10). 
Letting w = 24 and 0 in (3.4) yields the roots (zl9 z2) = (32 / 5, - 4) and (16/ 5, - 4 / 5), respec-

tively. None of these roots is a fourth power, as is required by the replacement z - v4 above. 
This contradiction comes from the fact that we supposed that u is an integer. Q.E.D. 

3.2 The Reducible Case 
Theorem 2 tells us that the quintics of the form q(x) may be solved by radicals only if they 

are reducible. The solution of this case has been given by Rabinowitz in his nice paper [8]. In 
fact, after showing that, if r = m5 -m (meZ), then 

x5 -x-(m5 -m) = (x-m)(x4 +mx3+m2x2 +m3x+m4 -1) , (3.6) 

this author proves the following. 
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Theorem3 (Rabinowitz): lfr^m5-m, then q(x) Is reducible iff 

r2= \ J J (3.7) 

Since the only square Fibonacci numbers with even subscript are F0 = 0, F2 = l, and Fl2 = 
144 (e.g., see [2]), the nonzero values of r (note that r = 0 has the form m5 - m with m = - 1 , 0, 
or 1) that satisfy (3.7) are given by 

l±F4F5^ = ±15, 
r = \±F9Fl0^ = ±22440, (3.8) 

[+F14F15A/^~ - ±2759640. 

4. THE NUMBERS x„(5) THAT HAVE A CLOSED-FORM EXPRESSION 

First, from (3.6) and (1.1), it is immediately seen that 

xj_a(5) = a(a = l,2,3,...). (4.1) 

Then one can readily ascertain that the decompositions of the polynomials q(x) having the posi-
tive values of r given by (3.8) are 

x 5 -x -15 = (x 2 -x + 3)(x3 + x2-2x-5) , 
x5 - x - 22440 = (x2 + 12x + 55)(x3 -12x2 + 89x - 408), 

x5 - x - 2759640 = (x2 - 12x + 377)(x3 + 12x2 - 233x - 7320). 

The real positive roots of the above polynomials give the solution of our problem. Namely, 
we get 

x to- i . J i i5 VoTf J i i5 VoTf 
%( 5 ) - - 3 + f 5 4 + 18 +f 54 18 > (4-2) 

^ 4 4 o ( 5 ) - 4 ± ^ 7 ^ P - f 9 0 ± ^ ^ , (4.3) 

/ o , , J , I , A , V726984777 , J ^ A V726984777~ (AA. 
^275964o(5) = - 4 + | 3 1 3 0 + g ±|3130 . (4.4) 

and 

5. CONCLUDING COMMENTS 

For solving the problem of finding all numbers xn(5) that have a closed-form expression, we 
have characterized all the quintics of the Bring-Jeirard form x5 -x-r over Z that are solvable by 
radicals. This result is not trivial because there are examples of irreducible polynomials of degree 
five over Q that can either be solved by radicals or not; e.g., x5 + 15x + 12 can be solved [3], 
whereas x 5 -6x + 3 cannot [10, p. 147]. 

Formal solutions applicable to unsolvable quintics were sought by using elliptic functions [6]; 
in particular, that given by Hermite is based on the Bring-Jerrard form [7]. 
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Let us conclude our paper by posing ourselves the following question. 

Question: Do there exist nonintegral numbers xn(k) with k >6, that can be expressed by 
radicals? 
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