DISTRIBUTION OF BINOMIAL COEFFICIENTS MODULO THREE

Zachary M. Franco

Mathematics Department, Butler University, Indianapolis, IN 46208 e-mail: franco@butler.edu (Submitted September 1996-Final Revision October 1997)

1. INTRODUCTION

In 1947, Fine [1] proved that almost all binomial coefficients are even. That is, if $T_2(n)$ is the number of odd binomial coefficients $\binom{m}{k}$ with $0 \le k \le m < n$, then $T_2(n) = o(n^2)$. In particular, since the total number of such binomial coefficients is $1+2+\cdots+n = \frac{1}{2}n^2 + \frac{1}{2}n$, the proportion of odd coefficients tends to 0 with n. In 1977, Harborth [3] improved this estimate to

$$812556n^{\log_2 3} \le T_2(n) \le n^{\log_2 3},$$

and although the best constant in the lower bound has been calculated to great accuracy [2], its exact value is still unknown. The behavior of $T_2(n)$ and its generalizations to $T_p(n)$ for prime p have also been studied by Howard [4], Singmaster [6], Stein [7], and Volodin [8]. In the following definitions, let $\binom{0}{0} = 1$. For any prime p, it is convenient to let $P = \binom{p+1}{2}$, $\theta_p = \log_p P$, and to let $S_p(n)$ denote the number of binomial coefficients $\binom{n}{r}$ that are not divisible by p. Then

$$T_p(n) = \sum_{k=0}^{n-1} S_p(k)$$

is the number of binomial coefficients in the first *n* rows of Pascal's triangle that are not divisible by *p*. It is known (see [3] and [7]) that the quotient $R_p(n) = T_p(n)/n^{\theta_p}$ is bounded above by $\alpha_p = \sup_{n\geq 1} R_p(n) = 1$ and below by $\beta_p = \inf_{n\geq 1} R_p(n)$. The β_p tend to $\frac{1}{2}$ with *p* [2], but to this point no exact values for β_p have been found.

2. THE CASE p = 3

Henceforth, the terms θ , R, S, T shall denote θ_3 , R_3 , S_3 , T_3 , respectively. Also, let

$$n = \sum_{i=1}^{k} a_i 3^{r_i}$$

be *n*'s base-three representation, where each $a_i = 1$ or 2 and $r_1 > r_2 > \cdots > r_k \ge 0$. We list the first few values of S(n), T(n), and R(n) in Table 1.

We shall confirm a conjecture of Volodin [8], namely that $\inf_{n\geq 1} R(n) = 2^{\log_3 2-1} = .77428$. The fractal nature of Pascal's triangle modulo 3 implies (see [5], Cor. 2, p. 367) the following recursive formula for T:

$$T(a \cdot 3^{s} + b) = \frac{1}{2}a(a+1)6^{s} + (a+1)T(b)$$
 for $a = 1$ or 2, $b < 3^{s}$.

It follows by iteration that

$$T\left(\sum_{i=1}^{k} a_i 3^{r_i}\right) = \frac{1}{2} \sum_{i=1}^{k} a_i (a_1 + 1) \cdots (a_i + 1) 6^{r_i}.$$
 (1)

JUNE-JULY

DISTRIBUTION OF BINOMIAL COEFFICIENTS MODULO THREE

n	S(n)	T(n)	R(n)	n	S(n)	<i>T</i> (<i>n</i>)	R(n)	n	S(n)	<i>T</i> (<i>n</i>)	R(n)
0	1	0		10	4	38	.88890	20	9	117	.88368
1	2	1	1	11	6	42	.84103	21	6	126	.87887
2	3	3	.96864	12	4	48	.83401	22	8	132	.85345
3	2	6	1	13	8	52	.79294	23	18	144	.86592
4	4	8	.83401	14	12	60	.81077	24	9	162	.87887
5	6	12	.86938	15	6	72	.86938	25	18	171	.89754
6	3	18	.96864	16	18	78	.84773	26	27	189	.93055
7	6	21	.87887	17	12	.96	.94514	27	2	216	1
8	9	27	.90884	18	3	108	.96864	40	16	320	.78037
9	2	36	1	19	6	111	.91152	121	32	1936	.77630

3. MAIN RESULT

Theorem 1: The number of binomial coefficients $\binom{m}{k}$, $k \le m < n$, that are not divisible by 3 is bounded below by $2^{\log_3 2 - 1} n^{\log_3 6}$ and this bound is sharp.

Proof: Let the two sequences x, y be defined by

$$x_i = 3^{r_i} \left[\frac{1}{2} a_i(a_1+1) \cdots (a_i+1) \right]^{\frac{1}{\theta}}$$
 and $y_i = a_i \left[\frac{1}{2} a_i(a_1+1) \cdots (a_i+1) \right]^{\frac{-1}{\theta}}, \ 1 \le i \le k$.

We apply Hölder's inequality to the sequences **x**, **y** with the conjugate exponents $\theta = \log_3 6$ and $\theta' = \log_2 6$:

$$\sum_{i=1}^{k} x_{i} y_{i} \leq \left(\sum_{i=1}^{k} x_{i}^{\theta}\right)^{\theta} \cdot \left(\sum_{i=1}^{k} y_{i}^{\theta'}\right)^{\theta'},$$

$$n \leq \left(\sum_{i=1}^{k} \left\{3^{r_{i}} \left[\frac{1}{2}a_{i}(a_{1}+1)\cdots(a_{i}+1)\right]^{\frac{1}{\theta}}\right\}^{\theta}\right)^{\frac{1}{\theta}} \cdot \left(\sum_{i=1}^{k} \left\{a_{i} \left[\frac{1}{2}a_{i}(a_{1}+1)\cdots(a_{i}+1)\right]^{-\frac{1}{\theta}}\right\}^{\theta'}\right)^{\frac{1}{\theta'}},$$

$$n^{\theta} \leq \left(\sum_{i=1}^{k} 6^{r_{i}} \frac{1}{2}a_{i}(a_{1}+1)\cdots(a_{i}+1)\right) \cdot \left(\sum_{i=1}^{k} a_{i}^{\theta'} \left[\frac{1}{2}a_{i}(a_{1}+1)\cdots(a_{i}+1)\right]^{-\frac{\theta'}{\theta}}\right)^{\frac{\theta}{\theta'}},$$

$$R(n) \geq \frac{1}{2} \left(\sum_{i=1}^{k} a_{i} \left[(a_{1}+1)\cdots(a_{i}+1)\right]^{-\frac{\theta'}{\theta}}\right)^{-\frac{\theta}{\theta'}}.$$
(2)

Let $v = \theta' / \theta = \log_2 3 = 1.58496$ and let

$$U_k = \sum_{i=1}^k a_i [(a_1 + 1) \cdots (a_i + 1)]^{-\nu}.$$

Note that $U_k = f_1 \circ f_2 \circ f_3 \circ \cdots \circ f_k(0)$, where

1998]

273

DISTRIBUTION OF BINOMIAL COEFFICIENTS MODULO THREE

$$f_i(x) = \frac{x + a_i}{(a_i + 1)^{\nu}}$$

Each f_i is one of the two increasing functions $\frac{x+1}{3}$ or $\frac{x+2}{3^v}$ and U_k will be maximized when each a_i is chosen to maximize f_i . For a given x, we find that $\frac{x+1}{3} > \frac{x+2}{3^v}$ (i.e., $a_i = 1$) if and only if x > .109253. So, for x = 0, $f_k(0)$ is maximized when $a_k = 2$. For i < k, $f_i(x)$ is maximized when $a_i = 1$ since x will now be in the range of f_i and, hence, $\geq \frac{1}{3}$. Thus,

$$\begin{split} U_k &\leq \frac{1}{2^{\nu}} + \frac{1}{2^{2\nu}} + \dots + \frac{1}{2^{(k-1)\nu}} + \frac{2}{2^{(k-1)\nu} \cdot 3^{\nu}} \\ &= \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^{k-1}} + \frac{2}{3^{k-1} \cdot 3^{\nu}} = \frac{1}{2} - \frac{\frac{1}{2} - 2 \cdot 3^{-\nu}}{3^{k-1}} \\ &\leq \frac{1}{2} \quad \text{since } \frac{1}{2} - 2 \cdot 3^{-\nu} > 0. \end{split}$$

Hence, from (2) we have, for all n,

$$R(n) \ge \frac{1}{2} (U_k)^{-\frac{1}{\nu}} > \left(\frac{1}{2}\right)^{1-\frac{1}{\nu}} = 2^{\log_3 2-1},$$

whence

$$\beta_3 \ge \left(\frac{3}{2}\right)^{-\frac{1}{\nu}} = 2^{\log_3 2 - 1}$$

We now consider numbers of the form $1+3+3^2+3^3+\cdots+3^k$. It follows from (1) that

$$R(1+3+3^{2}+3^{3}+\dots+3^{k}) = \frac{\frac{1}{2}(2\cdot6^{k}+2^{2}\cdot6^{k-1}+\dots+2^{k+1})}{(1+3+3^{2}+3^{3}+\dots+3^{k})^{\log_{3}6}}$$
$$= \frac{2^{k}(3^{k}+3^{k-1}+\dots+1)}{\left(\frac{3^{k+1}-1}{2}\right)^{\log_{3}6}} = \frac{2^{k}}{\left(\frac{3^{k+1}-1}{2}\right)^{\log_{3}2}} = \frac{2^{k+1}}{(3^{k+1}-1)^{\log_{3}2}} \cdot 2^{\log_{3}2-1}$$

so that $\lim_{k\to\infty} R(1+3+3^2+3^3+\cdots+3^k) = 2^{\log_3 2-1}$.

Hence, $\beta_3 \le 2^{\log_3 2-1}$. This implies $\beta_3 = 2^{\log_3 2-1}$ and $T(n) > 2^{\log_3 2-1}n^{\log_3 6}$, the desired result. Note that *n* and T(n) are integers, so there is strict inequality.

The proof of Theorem 1 works because the sequence $\{1, 1, 1, ...\}$ that minimizes R(n) gives rise to sequences x_i, y_i for which equality holds in Hölder's inequality. This does not occur for $p \neq 3$, so the proof does not extend to other primes.

ACKNOWLEDGMENT

I am grateful to Richard Bumby for suggesting this topic to me and to John Gaisser for his many helpful comments.

REFERENCES

- 1. N. J. Fine. "Binomial Coefficients Modulo a Prime." Amer. Math. Monthly 54 (1947):589-92.
- 2. Z. Franco. "On the Distribution of Binomial Coefficients Modulo *p*." To appear in *Proceed*ings of the Diophantine Conference at Eger. De Gruyter, 1998.

- 3. H. Harborth. "Number of Odd Binomial Coefficients." Proc. Amer. Math. Soc. 62 (1977): 19-22.
- 4. F. T. Howard. "The Number of Binomial Coefficients Divisible by a Fixed Power of a Prime." Proc. Amer. Math. Soc. 37 (1973):358-62.
- 5. J. R. Roberts. "On Binomial Coefficient Residues." Canadian J. Math. 9 (1957):363-70.
- 6. D. Singmaster. "Notes on Binomial Coefficients III-Any Integer Divides Almost All Binomial Coefficients." J. London Math. Soc. 8 (1974):555-60.
- 7. A. H. Stein. "Binomial Coefficients Not Divisible by a Prime." In Lecture Notes in Mathematics 1383:170-77. Berlin-New York: Springer Verlag, 1989.
- 8. N. A. Volodin. "Number of Multinomial Coefficients Not Divisible by a Prime." *The Fibo*nacci Quarterly 22.5 (1994):402-06.

AMS Classification Numbers: 11B37, 11B65

A LETTER OF GRATITUDE

The Editor of The Fibonacci Quarterly and the Board of Directors of The Fibonacci Association wish to express their sincere gratitude to those Fibonacci members who have provided financial support over and above their annual membership renewal dues.

During its 35 years of operation as a nonprofit corporation, The Fibonacci Association has kept its membership dues at the minimum level needed to produce and distribute four issues of the Quarterly each year.

As total membership has increased through the years, so has the number of articles submitted for evaluation and acceptance for publication. To maintain a reasonable backlog of articles approved for publication, it has occasionally been necessary to publish an extra issue of the Quarterly to attain a minimum lead time from final approval of an article to its actual publication.

Inasmuch as maintaining a minimum level of membership dues and publishing extra issues of The Fibonacci Quarterly is a mutually exclusive situation, the additional financial support provided by our members at the time of membership renewal is deeply appreciated.

Gerald E. Bergum, Editor