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1. INTRODUCTION 

Let/? be a prime. In 1889 Voronoi proved the congruence 

L2*-1 (modp), (1) ( « - « ' • • * ) % - £ 2k , , 
• 5 = 1 L . 

sa 
P 

where £, a are positive integers such thatp does not divide a and p-\ does not divide 2k; B2k is 
the 2£th Bernoulli number. More general versions of this congruence can be found in [6] or [3]. 
Following Wagstaff, denote congruence (1) also by the symbol {a}. Adding together congru-
ences {2}, {3}, and -{4}, we obtain the congruence 

{2}+ {3}-{4} 

which, after some obvious cancellations in the right member, takes the form 

(2P-2k+3P-2k_4P-2k_l)B2L^ j y * - i ( m o d / ? ) ? ( 2 ) 

4k p/4<s<p/3 

provided that p > 4. Several such identities are also obtainable in a way analogous to that shown 
above by using suitable variations of parameter a. Several authors used formulas of this type to 
test regularity via computer. The best result in this direction is the following one, due to Tanner 
and Wagstaff [5], which is valid for all primes p > 10, 

(2p--2* + gP-2k 

+ (1 + 2 

- 3 2 * - 1 

-2 2 *- 1 

-io?-2k-

2k-l+32k-

\T> 2k-l 

60 <S< 10 

-1)^*-
4k 

1+42fe" 

-(22*-1 

-(22*-

- ( l + 22fe-1+32fc-1 

i+i2M-1) yyk-

+ 62k-

l+42k 

no<s<9 

-l+l22k-1) 
18 

+ 42k~ 

1 

-4£ 

) 2> 

-1 

(3) 

- (2 2 M +4 2 *- 1 ) %s2k-1 (mod/?). 
120 ^ ^ 5 

In formula (3), the sums in the right member contain a total of about p/lS terms [formula (2) 
contains about p112 terms while formula (1) contains (p -1) / 2 terms for a = 2]. All the appli-
cations of these formulas concerning Fermat's Last Theorem are now mainly of historical interest 
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after Wiles's proof [8] of FLT. There are congruences of various types for the Bernoulli numbers. 
Recent results on congruences for Bernoulli numbers of higher order can be found in [2]. 

We shall prove the following analog of formula (1). 

Theorem 1: Let ̂  be a primitive Dirichlet character with modulus m > 2. If a > 2 is an integer 
such that m does not divide a, then 

f 0 if % is even, 
m-\ 

s=\ 

sa 
m z0): 

*(2)-2 s=l 

(4) 

where the bar means complex conjugation. 
The proof of Theorem 1 will be given in Section 2. Formula (4) can be written, equivalently, 

in the form 
fO if^iseven, 

(5) 
m-\ 

s 
s=l L 

sa 
m 

because of the formula 

X(s)-

m-l 

Z,SX(S) if^isodd, 
m s=\ 

Ysx(s) = m 
[mil] 

s=l z(2)~2; 
Y,Zis), (6) 

which is valid for an odd primitive character % • 
We use formula (5) to obtain /^-divisibility criteria for Bernoulli numbers of the form 

n(2k-\)P
n+v * - M , ~ ; 2 * 

Criteria of this type are still of interest because of their connection with the invariants of the irreg-
ular class group of a properly irregular cyclotomic field [7] (cf. also [4], p. 189). Assume now 
that m = p , an odd prime. Let y/ be the character defined as the/?-adic limit 

y/(s) - lim sp 

for every s prime top. All the values of y/ belong to Z p , the ring of/7-adic integers. Moreover, 

y/(s) = spn~l (mod/ / 7 ) , n>\. 

For an odd character, we have x - W2k~l? f ° r s o m e k>\, and 

^ ) ^ - ^ (mod//*), 
X{S) - 5-^",(2^1) - sT^y-^Vk-l) s sp-\P-2k) ( m o d pny 

Theorem 2: Let /? be a prime >3. If a is an integer such that/? does not divide a, then 

[a-a p»-\p-2k) ]Bt (2Jt-l)/7"+l 

p-l 

-I sa Pk~l)pn~l (mod//1), 

for every k > 1 such that p - l does not divide 2k. 
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Proof: We consider the 17th Bernoulli polynomial 

y=ov 

Then, for the odd character % = y2^"1, w e have 
p-1 P B (v)-B 
y sr(s) = y pk-w+l = w-w+v^' "yk-w+i 
S S (2k-l)p»+2 

[(2k-l)p» + l](2k-l)p» 3 
//Z>(2Jt-l)/7"+l ^ 31 r U(2k-\)pn-\ ^ 

T I « ( ' ) - W « ( m o d ^ 

Since p-\ does not divide 2k, we obtain the congruence 
P-\ 

which, together with Theorem 1 and relation (5), yields the sought result. 
For n = 1, congruence (7) reduces to congruence (1) since 

V - ^ , = [(2t-l)p + 1 ] J ^±_ . f (mod,) 

because of Kummer's congruence. 
We can prove, using exactly analogous techniques and starting from (7), a pn-analog of con-

gruence (3). Because of the obvious analogy between the proofs, the sought result follows simply 
by replacing expressions of the form 

Qp-2k Q2k-l ^ - 1 B2L 
9 2k 

in congruence (3) with the respective expressions 
npn-\p-2k) n(2k-l)p"-1 J2Jc-l)p"-1

 R 
U > " > A ' n{2k-l)pn+V 

The following theorem then follows. 

Theorem3: Let/? be an odd prime >10, k>l, p-l does not divide 2kand n > 1. Then 

2{p-2k)pn-1 +9(p-2k)p"-1 _lQ(p-2k)pn-1 _l 

2 (2k-l)pn+l 

."-1 /-Ot 1\„"-1 = [1+2{2k~l)p + 2{2k~l)p + 42k~l)p ] y sw-i)pn~l 

10^^120 

+ [1 + 2(2k~1)p"~l + 3^2A:-1>^"1 + 4(2*-1)/?w~1 + ^C2^-1)/7""1 ] V s(2k-l)pn~l 

120^^9 

_ 3(2k-l)p"-1 y pk-l)jTl _ |-2(2A:-l)/7"-1
 + 6(2k-l)p"-1 j y s(2k-l)p"-1 

9 ^ ^ 30 18 <s< 60 
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1 8 ^ " ^ 120 

_ 2(2k-i)P"-1 y s(2k-i)P"-1 __ r2(2k-i)P"-1
 + 4(2k-i)P"-1

 + l2(2k-i)P"-1 -J y pk-\)P
n 

60 ^ A ^ 1 0 

120 ^ A < 5 

The congruence contains in the right member pi 18 terms only. 

2, PROOF OF THEOREM 1 

At first, we note that, obviously, 

5=1 L m - I - * * ) = ! I>(4 (8) 
7=1 5=0 

For integerj, 0<j<a, define 

0(x) = 
y ifx = 0or2nj/a, 
1 if0<x<27rj/a, 
0 if 2;rj I a<x<2n, 

and continue O(JC) periodically with period 2;r over the real numbers. The function O(x) has the 
Fourier expansion 

where 

2K 

First, we assume that a <m. Then 
[//w/a] m-l 

c = — f <D(xK"^ = — ( * " -1) 

jm/a\ m-l / n __ 

5=0 5=1 

2/nr//i 2/rij 

5 = 1 n=—<x> 

Inijn 

where 

r(x)i f (e~-l)x(n) 
2n ±L n 

5=1 
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As a consequence, 

y=i 5=0 2/r „~ n 
n=—co 

•a 

v- i 
_ i a > v Xto*--** <X)i" f XM 

In Jr.L " 2̂  i i n £ 
Since 

it follows that 

« imjn (a if n = 0(moda\ 
P6 ' [0 if«#0(moda), 

^ «=-oo W /=1 5=0 In „~ na 

= 4 ^ a ( a ) - a ) i m 

For even %, the last infinite sum is equal to zero while, for odd x, it is equal to 2Z(1, ~x). In view 
of the formula (cf [1], p. 336) 

[mil] 

L{\X) = m 
(2-z(2))r(x) % I,Zis) 

and relation (8), it follows that 
m-\ , [m/2] 

^ I L W J 
(9) 

for a < m. It remains to prove the theorem for a > m. Then a = al+mt, where ax and t are inte-
gers and 0 < ax < m. Also m does not divide av We have 

m-ir m-1 

Z 
5=1 
2Hk<*)=S 5=1 

m-l 

5ax +sf zO) 

SON m-l 

5=1 L ' " J 5=1 

The last expression is zero for even % For odd % w e have, in view of (6) and (9), 

= S|"^Lk(ff) + rZ^(5)-

which proves the theorem fora>m. 
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